题目
Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, …, N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.
Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.
Output Specification:
For each pop sequence, print in one line “YES” if it is indeed a possible pop sequence of the stack, or “NO” if not.
Sample Input:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
Sample Output:
YES
NO
NO
YES
NO
题目分析
已知一个栈限制容量最大为M,push操作压入1,2,3...N,已知K个序列,判断序列是否可能是出栈顺序
解题思路
- 1~N依次入栈,在入栈过程中,由p指针指向序列中当前等待出栈的元素
- 如果栈顶元素恰好等于序列当前等待出栈的元素,让栈顶元素出栈,p指针后移
- 继续循环2的操作,知道栈顶元素不等于序列中当前等待出栈的元素
- 继续1~N的压入
- 判断是否为出栈顺序
- 如果压栈过程中栈大小>=M,说明栈满,该序列不是出栈顺序,退出;
- 如果压栈执行结束后,栈中有剩余元素或者p指针未指向序列末尾,证明该序列不是出栈顺序
Code
Code 01
#include <iostream>
#include <stack>
using namespace std;
int main(int argc,char * argv[]) {
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
int seq[m]= {0};
for(int i=0; i<k; i++) {
for(int j=0; j<m; j++) {
scanf("%d",&seq[j]);
}
stack<int> sk;
int j,p = 0;
for(j=1; j<=m; j++) {
if(sk.size()>=n)break;
sk.push(j);
while(!sk.empty()&&sk.top()==seq[p]) {
sk.pop();
p++;
}
}
if(j<=n||!sk.empty())printf("NO
");
else printf("YES
");
}
return 0;
}