zoukankan      html  css  js  c++  java
  • HDU 2544 最短

    链接http://acm.hdu.edu.cn/showproblem.php?

    pid=2544


    解析

    首先数据量为V<=100

    那么这里使用不论什么基础的最短路的算法都不会超时!


    常见数据

     5 6 
     1 2 10 
     1 3 4 
     2 4 2 
     3 4 3 
     2 5 5 
     4 5 100 
    // 答案:14 
    
     2 4 
     1 2 10 
     1 3 4 
     2 4 2 
     3 4 3 
    // 答案:9


    Bellman-Ford算法

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <string>
    #include <vector>
    #include <queue>
    using namespace std;
    #define MAX_E 10010
    #define MAX_V 105
    #define INF 1e8
    
    struct edge{int from, to, cost; };
    edge es[2*MAX_E];
    int d[MAX_V];
    int V, E;
    
    void shortest_path(int s){
        for(int i=1; i<=V; ++i) d[i] = INF;
        d[s] = 0;
        while(true){
            bool update = false;
            for(int i=0; i<2*E; ++i){
                edge e = es[i];
                if(d[e.from] != INF&&d[e.to]>d[e.from]+e.cost){
                    d[e.to] = d[e.from] + e.cost;
                    update = true;
                }
            }
            if(!update) break;
    
        }
    }
    
    int main(){
        while(~scanf("%d%d", &V, &E), V||E){
            int i;
            int a,b,c;
    
            for(i=0; i<E; ++i){
                scanf("%d%d%d", &a, &b, &c);
                es[i].from = a; es[i].to = b; es[i].cost = c;
                es[i+E].from = b; es[i+E].to = a; es[i+E].cost = c;
            }
            shortest_path(1);
            printf("%d
    ", d[V]);
        }
    }


    Dijkstra算法

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <string>
    using namespace std;
    #define MAX_V 105
    #define MAX_X 105
    #define INF 1e8
    
    int cost[MAX_V][MAX_V];
    int d[MAX_X];
    bool used[MAX_X];
    int n,m;
    
    void dijkstra(int s){
        for(int i=1; i<=n; ++i){
            d[i] = INF;
            used[i] = false;
        }
        d[s] = 0;
    
        while(true){
            int v = -1;
            for(int u=1; u<=n; ++u){
                if(!used[u]&&(v==-1||d[u]<d[v])) v = u;
            }
            if(v == -1) break;
            used[v] = true;
            for(int u=1; u<=n; ++u){
                d[u] = min(d[u], d[v]+cost[v][u]);
            }
        }
    }
    
    int main(){
        while(~scanf("%d%d", &n, &m), m||n){
            int i;
            int a,b,c;
    
            for(i=1; i<=n; ++i)
                for(int j=1; j<=n; ++j)
                    cost[i][j] = INF;
    
            for(i=0; i<m; ++i){
                scanf("%d%d%d", &a, &b, &c);
                cost[a][b] = c;
                cost[b][a] = c;
            }
            dijkstra(1);
            printf("%d
    ", d[n]);
        }
    }


    Floyd算法

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <string>
    #include <vector>
    #include <queue>
    using namespace std;
    #define MAX_V 105
    #define MAX_X 105
    #define INF 1e8
    
    int d[MAX_V][MAX_V];
    bool used[MAX_X];
    int n,m;
    
    void floyd(){
        for(int k=1; k<=n; ++k){
            for(int i=1; i<=n; ++i){
                for(int j=1; j<=n; ++j){
                    d[i][j] = min(d[i][j], d[i][k]+d[k][j]);
                }
            }
        }
    }
    
    int main(){
        while(~scanf("%d%d", &n, &m), m||n){
            int i;
            int a,b,c;
    
            for(i=1; i<=n; ++i)
                for(int j=1; j<=n; ++j)
                    d[i][j] = INF;
            for(i=1; i<=n; ++i) d[i][i] = 0;
    
            for(i=0; i<m; ++i){
                scanf("%d%d%d", &a, &b, &c);
                d[a][b] = c;
                d[b][a] = c;
            }
            floyd();
            printf("%d
    ", d[1][n]);
        }
    }
    




    版权声明:本文博客原创文章。博客,未经同意,不得转载。

  • 相关阅读:
    UML_状态图
    UML_时序图
    UML_类图
    浅谈依赖注入
    MyEclipse_搭建SSH框架
    AOP:面向切面编程
    工厂模式
    (转)oracle使用expdp、impdp和exp、imp导入导出表及表结构
    oracle exp 和 imp 数据和表结构互相独立导出导入
    oracle 清空当前用户所有对象
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/4738520.html
Copyright © 2011-2022 走看看