Sumsets
Time Limit: 2000MS | Memory Limit: 200000K | |
Total Submissions: 13210 | Accepted: 5300 |
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
Source
做这题时有些被曾经的经验束缚了,看完题第一反应是母函数,然后上模板。然后输入1000000等结果,等啊等就是不出结果。。。參考了大牛的解题报告:Click
#include <stdio.h> #include <string.h> #define maxn 1000002 int dp[maxn]; int main() { int i, n; scanf("%d", &n); dp[1] = 1; for(i = 2; i <= n; ++i) { if(i & 1) dp[i] = dp[i-1]; else dp[i] = dp[i-1] + dp[i/2]; dp[i] %= 1000000000; } printf("%d ", dp[n]); return 0; }
版权声明:本文博主原创文章。博客,未经同意不得转载。