zoukankan      html  css  js  c++  java
  • poj 3264 线段树 求区间最大最小值

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q. Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

     
     
    线段树 处理该问题   存储区间 最大值与最小值
     
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<algorithm>
    #include<map>
    #include<queue>
    #include<stack>
    #define INF 0xfffffff
    using namespace std;
    struct tree
    {
        int L;
        int R;
        int minv;
        int maxv;
        int mid()
        {
            return (L+R)/2;
        }
    }tree[800010];
    int maxv=-INF;
    int minv=INF;
    void buildtree(int root,int L,int R)
    {
        tree[root].L=L;
        tree[root].R=R;
        tree[root].minv=INF;
        tree[root].maxv=-INF;
        if(L!=R)
        {
            buildtree(2*root+1,L,(L+R)/2);
            buildtree(2*root+2,(L+R)/2+1,R);
        }
    }
    void inse(int root,int i,int v)
    {
        if(tree[root].L==tree[root].R)
        {
            tree[root].minv=v;
            tree[root].maxv=v;
            return ;
        }
        tree[root].minv=min(tree[root].minv,v);
        tree[root].maxv=max(tree[root].maxv,v);
        if(i<=tree[root].mid())
            inse(2*root+1,i,v);
        else
            inse(2*root+2,i,v);
    }
    void query(int root ,int s,int e)
    {
        if(tree[root].minv>minv&&tree[root].maxv<maxv)
            return ;
        if(tree[root].L==s&&tree[root].R==e)
        {
            minv=min(minv,tree[root].minv);
            maxv=max(maxv,tree[root].maxv);
            return ;
        }
        if(e<=tree[root].mid())
            query(2*root+1,s,e);
        else if(s>tree[root].mid())
            query(2*root+2,s,e);
        else
        {
            query(2*root+1,s,tree[root].mid());
            query(2*root+2,tree[root].mid()+1,e);
        }
    }
    int main()
    {
        int n,q;
        int re;
        int ss,ee;
            scanf("%d%d",&n,&q);
            buildtree(0,1,n);
            for(int i=1; i<=n; i++)
            {
                //cout<<"**********"<<endl;
                scanf("%d",&re);
                inse(0,i,re);
            }
            for(int j=1; j<=q; j++)
            {
                scanf("%d%d",&ss,&ee);
                minv=INF;
                maxv=-INF;
                query(0,ss,ee);
                printf("%d
    ",maxv-minv);
            }
    
    return 0;
    }
    View Code
     
  • 相关阅读:
    嵌套循环
    for循环
    while循环
    switch多选择结构
    python9--内存管理 引用计数 标记清除 分代回收
    python8--文件操作 with。。。open语法
    python7 数据类型的相互转化 字符编码
    python6-深浅拷贝 元组类型 字典类型 集合类型
    python5 数字类型 字符串类型 列表类型
    python4 分支结构,循环结构 for循环
  • 原文地址:https://www.cnblogs.com/hsd-/p/4671725.html
Copyright © 2011-2022 走看看