zoukankan      html  css  js  c++  java
  • Codeforces Round #345 (Div. 2) B

    B. Beautiful Paintings
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes happy every time he passes from a painting to a more beautiful one.

    We are allowed to arranged pictures in any order. What is the maximum possible number of times the visitor may become happy while passing all pictures from first to last? In other words, we are allowed to rearrange elements of a in any order. What is the maximum possible number of indices i (1 ≤ i ≤ n - 1), such that ai + 1 > ai.

    Input

    The first line of the input contains integer n (1 ≤ n ≤ 1000) — the number of painting.

    The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 1000), where ai means the beauty of the i-th painting.

    Output

    Print one integer — the maximum possible number of neighbouring pairs, such that ai + 1 > ai, after the optimal rearrangement.

    Examples
    input
    5
    20 30 10 50 40
    output
    4
    input
    4
    200 100 100 200
    output
    2
    Note

    In the first sample, the optimal order is: 10, 20, 30, 40, 50.

    In the second sample, the optimal order is: 100, 200, 100, 200.

    题解:在一串序列中  不断的找到单调递增序列 序列中的元素只能用一次

    标记处理

     1 #include<bits/stdc++.h>
     2 #include<iostream>
     3 #include<cstdio>
     4 #define ll __int64
     5 using namespace std;
     6 int a[1005],n,ss[1005];
     7 int main() {
     8     scanf("%d",&n);
     9     for(int i=1;i<=n;i++)
    10     {
    11         scanf("%d",&a[i]);
    12          ss[a[i]]++;
    13     }
    14     int re=0;
    15     sort(a+1,a+n+1);
    16     while(1)
    17     {
    18         int sm=0;
    19         for(int j=1;j<=1000;j++)
    20         {
    21             if(ss[j])
    22             {
    23                 sm++;
    24                 ss[j]--;
    25             }
    26         }
    27         if(!sm)break;
    28         re+=(sm-1);
    29     }
    30    printf("%d
    ",re);
    31     return 0;
    View Code
  • 相关阅读:
    第四章——不定积分必记公式
    高等数学思维导图——4.一元函数积分学【不定积分+定积分】
    算法很美(三)
    第三章——微分中值定理与导数必记公式
    详解洛必达法则
    高等数学思维导图——3.微分中值定理与导数的应用
    Python课程笔记(二)
    第二章——导数与微分必记公式
    高等数学思维导图——2.导数与微分
    第二章.给客户所需之物
  • 原文地址:https://www.cnblogs.com/hsd-/p/5255137.html
Copyright © 2011-2022 走看看