zoukankan      html  css  js  c++  java
  • HDU 3507 斜率优化dp

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 11141    Accepted Submission(s): 3393


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5
    5
    9
    5
    7
    5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     
    题意:给你n个数以及M   将n个数连续分成若干部分求 和的最小值
    题解:d[i]=dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
    假设k<j<i 从j处分开比从k处分开更优则可以得到
    dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j])<dp[k]+m+(sum[i]-sum[k])*(sum[i]-sum[k]);
    =>(dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]))/2*(sum[j]-sum[k])<=sum[i] //演算一下
    右侧 sum[i]是前缀和 是递增的
    左侧 恒小于右式才能更新dp[i]   维护一个下凸包
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <algorithm>
     6 #include <stack>
     7 #include <queue>
     8 #include <cmath>
     9 #include <map>
    10 #define ll __int64
    11 using namespace  std;
    12 int dp[500005];
    13 int q[500005];
    14 int sum[500005];
    15 int head,tail,n,m;
    16 int getDP(int i,int j)
    17 {
    18     return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
    19 }
    20 int getUP(int j,int k)
    21 {
    22     return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
    23 }
    24 int getdown(int j,int k)
    25 {
    26     return 2*(sum[j]-sum[k]);
    27 }
    28 int main()
    29 {
    30     while(scanf("%d %d",&n,&m)==2)
    31     {
    32         for(int i=1; i<=n; i++)
    33             scanf("%d",&sum[i]);
    34         sum[0]=dp[0]=0;
    35         for(int i=1; i<=n; i++)
    36             sum[i]+=sum[i-1];
    37         head=tail=0;
    38         q[tail++]=0;
    39         for(int i=1; i<=n; i++)
    40         {
    41             while(head+1<tail && getUP(q[head+1],q[head])<=sum[i]*getdown(q[head+1],q[head]))
    42                 head++;
    43             dp[i]=getDP(i,q[head]);
    44             while(head+1<tail && getUP(i,q[tail-1])*getdown(q[tail-1],q[tail-2])<=getUP(q[tail-1],q[tail-2])*getdown(i,q[tail-1]))
    45                 tail--;
    46             q[tail++]=i;
    47         }
    48         printf("%d
    ",dp[n]);
    49     }
    50     return 0;
    51 }
     
  • 相关阅读:
    swift 动画
    WCF身份验证二:基于消息安全模式的自定义身份验证
    WCF身份验证一:消息安全模式之<Certificate>身份验证
    SQL Server 事务与锁
    C# 6.0 的新特性
    SQL Cursor 游标的使用
    C# 几种读取MAC地址的方法
    C# 获取方法所在的 命名空间 类名 方法名
    SQL Server 日志清除
    C# 利用WMI对象获取物理内存和可用内存大小
  • 原文地址:https://www.cnblogs.com/hsd-/p/6413559.html
Copyright © 2011-2022 走看看