zoukankan      html  css  js  c++  java
  • HDU 3507 斜率优化dp

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 11141    Accepted Submission(s): 3393


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5
    5
    9
    5
    7
    5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     
    题意:给你n个数以及M   将n个数连续分成若干部分求 和的最小值
    题解:d[i]=dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
    假设k<j<i 从j处分开比从k处分开更优则可以得到
    dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j])<dp[k]+m+(sum[i]-sum[k])*(sum[i]-sum[k]);
    =>(dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]))/2*(sum[j]-sum[k])<=sum[i] //演算一下
    右侧 sum[i]是前缀和 是递增的
    左侧 恒小于右式才能更新dp[i]   维护一个下凸包
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <algorithm>
     6 #include <stack>
     7 #include <queue>
     8 #include <cmath>
     9 #include <map>
    10 #define ll __int64
    11 using namespace  std;
    12 int dp[500005];
    13 int q[500005];
    14 int sum[500005];
    15 int head,tail,n,m;
    16 int getDP(int i,int j)
    17 {
    18     return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
    19 }
    20 int getUP(int j,int k)
    21 {
    22     return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
    23 }
    24 int getdown(int j,int k)
    25 {
    26     return 2*(sum[j]-sum[k]);
    27 }
    28 int main()
    29 {
    30     while(scanf("%d %d",&n,&m)==2)
    31     {
    32         for(int i=1; i<=n; i++)
    33             scanf("%d",&sum[i]);
    34         sum[0]=dp[0]=0;
    35         for(int i=1; i<=n; i++)
    36             sum[i]+=sum[i-1];
    37         head=tail=0;
    38         q[tail++]=0;
    39         for(int i=1; i<=n; i++)
    40         {
    41             while(head+1<tail && getUP(q[head+1],q[head])<=sum[i]*getdown(q[head+1],q[head]))
    42                 head++;
    43             dp[i]=getDP(i,q[head]);
    44             while(head+1<tail && getUP(i,q[tail-1])*getdown(q[tail-1],q[tail-2])<=getUP(q[tail-1],q[tail-2])*getdown(i,q[tail-1]))
    45                 tail--;
    46             q[tail++]=i;
    47         }
    48         printf("%d
    ",dp[n]);
    49     }
    50     return 0;
    51 }
     
  • 相关阅读:
    接口开发中的 RestTemplate 传参问题
    逆流成河:五年软件开发生涯
    .NET Web开发技术简单整理
    2011-05-29 21:48 VS.NET2010水晶报表安装部署[VS2010]
    WPF 基础到企业应用系列3——WPF开发漫谈
    C# WinForm开发系列
    接口和委托的区别
    通过jquery触发select自身的change事件
    php去掉字符串中的最后一个字符和汉字
    Go语言学习之数据类型
  • 原文地址:https://www.cnblogs.com/hsd-/p/6413559.html
Copyright © 2011-2022 走看看