zoukankan      html  css  js  c++  java
  • HDU 3480 斜率dp

    Division

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
    Total Submission(s): 5053    Accepted Submission(s): 1980


    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     
    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     
    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     
    Sample Input
    2
    3 2
    1 2 4
    4 2
    4 7 10 1
     
    Sample Output
    Case 1: 1
    Case 2: 18
    Hint
    The answer will fit into a 32-bit signed integer.
     
    Source
    题意:给你一个容量为n的集合 现在选取 m个子集 并且要求m个子集的并集为原集合  每个集合的代价为集合内(MAX – MIN)^2 求最少的代价
    题解:
     1 #pragma comment(linker, "/STACK:102400000,102400000")
     2 #include <cstdio>
     3 #include <iostream>
     4 #include <cstdlib>
     5 #include <cstring>
     6 #include <algorithm>
     7 #include <cmath>
     8 #include <cctype>
     9 #include <map>
    10 #include <set>
    11 #include <queue>
    12 #include <bitset>
    13 #include <string>
    14 #include <complex>
    15 #define ll __int64
    16 #define mod 1000000007
    17 using namespace std;
    18 int t;
    19 int n,m;
    20 int a[10004];
    21 int dp[5005][10004];
    22 int q[10004],head,tail;
    23 int main()
    24 {
    25     scanf("%d",&t);
    26     for(int s=1; s<=t; s++)
    27     {
    28         scanf("%d %d",&n,&m);
    29         for(int j=1; j<=n; j++)
    30             scanf("%d",&a[j]);
    31         sort(a+1,a+1+n);
    32         for(int j=1; j<=n; j++)
    33             dp[1][j]=(a[j]-a[1])*(a[j]-a[1]);
    34         for(int i=2; i<=m; i++)
    35         {
    36             head=tail=0;
    37             q[tail++]=i-1;
    38             for(int j=i; j<=n; j++)
    39             {
    40                 while(head+1<tail)
    41                 {
    42                     int p1=q[head],p2=q[head+1];
    43                     int x1=a[p1+1],x2=a[p2+1];
    44                     int y1=dp[i-1][p1]+x1*x1,y2=dp[i-1][p2]+x2*x2;
    45                     if(y2-y1<2*a[j]*(x2-x1))
    46                         head++;
    47                     else
    48                         break;
    49                 }
    50                 int k=q[head];
    51                 dp[i][j]=dp[i-1][k]+(a[j]-a[k+1])*(a[j]-a[k+1]);
    52                 while(head+1<tail&&j!=n)
    53                 {
    54                     int p1=q[tail-2],p2=q[tail-1],p3=j;
    55                     int x1=a[p1+1],x2=a[p2+1],x3=a[p3+1];
    56                     int y1=dp[i-1][p1]+x1*x1,y2=dp[i-1][p2]+x2*x2,y3=dp[i-1][p3]+x3*x3;
    57                     if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2))
    58                         tail--;
    59                     else
    60                         break;
    61                 }
    62                 q[tail++]=j;
    63             }
    64         }
    65         printf("Case %d: %d
    ",s,dp[m][n]);
    66     }
    67     return 0;
    68 }
  • 相关阅读:
    二进制或者其他进制转为十进制
    十进制转为二进制或者其他进制
    0.1 + 0.2 !== 0.3
    [git]删除远程分支
    [git]一个本地仓库,多个远程仓库
    [git]用户名,邮箱
    npm install命令
    常用命令:查看端口
    std::lock_guard 与 std::unique_lock
    std::mutex
  • 原文地址:https://www.cnblogs.com/hsd-/p/7257643.html
Copyright © 2011-2022 走看看