zoukankan      html  css  js  c++  java
  • HDU 6085 bitset

    Rikka with Candies

    Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1452    Accepted Submission(s): 634


    Problem Description
    As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

    There are n children and m kinds of candies. The ith child has Ai dollars and the unit price of the ith kind of candy is Bi. The amount of each kind is infinity. 

    Each child has his favorite candy, so he will buy this kind of candies as much as possible and will not buy any candies of other kinds. For example, if this child has 10dollars and the unit price of his favorite candy is 4 dollars, then he will buy two candies and go home with 2 dollars left.

    Now Yuta has q queries, each of them gives a number k. For each query, Yuta wants to know the number of the pairs (i,j)(1in,1jm) which satisfies if the ith child’s favorite candy is the jth kind, he will take k dollars home.

    To reduce the difficulty, Rikka just need to calculate the answer modulo 2.

    But It is still too difficult for Rikka. Can you help her?
     
    Input
    The first line contains a number t(1t5), the number of the testcases. 

    For each testcase, the first line contains three numbers n,m,q(1n,m,q50000)

    The second line contains n numbers Ai(1Ai50000) and the third line contains m numbers Bi(1Bi50000).

    Then the fourth line contains q numbers ki(0ki<maxBi) , which describes the queries.

    It is guaranteed that AiAj,BiBj for all ij.
     
    Output
    For each query, print a single line with a single 01 digit -- the answer.
     
    Sample Input
    1 5 5 5 1 2 3 4 5 1 2 3 4 5 0 1 2 3 4
     
    Sample Output
    0 0 0 0 1
     
    Source
     
     1 #pragma comment(linker, "/STACK:1024000000,1024000000")
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cmath>
     5 #include<string>
     6 #include<queue>
     7 #include<algorithm>
     8 #include<stack>
     9 #include<cstring>
    10 #include<vector>
    11 #include<list>
    12 #include<set>
    13 #include<map>
    14 #include<bitset>
    15 #include<time.h>
    16 using namespace std;
    17 int t;
    18 int n,m,q;
    19 bitset<50004> a,b,ans,exm;
    20 int main(){
    21     scanf("%d",&t);
    22     for(int i=1;i<=t;i++){
    23         scanf("%d %d %d",&n,&m,&q);
    24         a.reset();
    25         b.reset();
    26         int maxn=0;
    27         int x;
    28         for(int j=0; j<n;j++){
    29           scanf("%d",&x);
    30           a.set(x);
    31         }
    32         for(int j=0;j<m;j++){
    33             scanf("%d",&x);
    34             b.set(x);
    35             maxn=max(maxn,x);
    36         }
    37         exm.reset();
    38         ans.reset();
    39         for(int j=maxn;j>=0;j--){
    40             ans[j]=(exm&(a>>j)).count()&1;//ans[j]:(a-j)%b==0的个数的奇偶性
    41             if(b[j]){
    42                 for(int k=0;k<=50000;k+=j)
    43                  exm.flip(k);
    44             }
    45         }
    46         for(int j=1;j<=q;j++){
    47             scanf("%d",&x);
    48             printf("%c
    ",ans[x]?'1':'0');
    49         }
    50     }
    51     return 0;
    52 }
     
  • 相关阅读:
    CSS書寫規範及CSS Hack
    C#中为什么不能再方法里定义静态变量(Static)
    本机操作Excel文件提示错误:未在本地计算机上注册“Microsoft.Jet.OLEDB.4.0”提供程序。
    C#中静态变量和 静态方法的作用
    C#静态构造函数和非静态构造函数
    C# 判断字符串为空的4种方法及效率
    ASP.NET反射
    C#排序1(冒泡排序、直接排序、快速排序)
    javascript、jquery 、C#、sqlserveer、mysql、oracle中字符串截取的区别和用法
    MySQL数据库不识别server=.而是识别localhost
  • 原文地址:https://www.cnblogs.com/hsd-/p/7347353.html
Copyright © 2011-2022 走看看