zoukankan      html  css  js  c++  java
  • twitter storm源码走读之3--topology提交过程分析

    概要

    storm cluster可以想像成为一个工厂,nimbus主要负责从外部接收订单和任务分配。除了从外部接单,nimbus还要将这些外部订单转换成为内部工作分配,这个时候nimbus充当了调度室的角色。supervisor作为中层干部,职责就是生产车间的主任,他的日常工作就是时刻等待着调度到给他下达新的工作。作为车间主任,supervisor领到的活是不用自己亲力亲为去作的,他手下有着一班的普通工人。supervisor对这些工人只会喊两句话,开工,收工。注意,讲收工的时候并不意味着worker手上的活已经干完了,只是进入休息状态而已。

    topology的提交过程涉及到以下角色。

    • storm client   负责将用户创建的topology提交到nimbus
    • nimbus        通过thrift接口接收用户提交的topology
    • supervisor       根据zk接口上提示的消息下载最新的任务安排,并负责启动worker
    • worker            worker内可以运行task,这些task要么属于bolt类型,要么属于spout类型
    • executor         executor是一个个运行的线程,同一个executor内可以运行同一种类型的task,即一个线程中的task要么全部是bolt类型,要么全部是spout类型

    一个worker等同于一个进程,一个executor等同于一个线程,同一个线程中能够运行一或多个tasks。在0.8.0版之前,一个task是对应于一个线程的,在0.8.0版本中引入了executor概念,变化引入之后,task与thread之间的一一对应关系就取消了,同时在zookeeper server中原本存在的tasks-subtree也消失了,有关这个变化,可以参考http://storm-project.net/2012/08/02/storm080-released.html

     storm client

    storm client需要执行下面这句指令将要提交的topology提交给storm cluster 假设jar文件名为storm-starter-0.0.1-snapshot-standalone.jar,启动程序为 storm.starter.ExclamationTopology,给这个topology起的名称为exclamationTopology.

    #./storm jar $HOME/working/storm-starter/target/storm-starter-0.0.1-SNAPSHOT-standalone.jar storm.starter.ExclamationTopology exclamationTopology

    这么短短的一句话对于storm client来说,究竟意味着什么呢? 源码面前是没有任何秘密可言的,那好打开storm client的源码文件

    def jar(jarfile, klass, *args):
        """Syntax: [storm jar topology-jar-path class ...]
    
        Runs the main method of class with the specified arguments. 
        The storm jars and configs in ~/.storm are put on the classpath. 
        The process is configured so that StormSubmitter 
        (http://nathanmarz.github.com/storm/doc/backtype/storm/StormSubmitter.html)
        will upload the jar at topology-jar-path when the topology is submitted.
        """
        exec_storm_class(
            klass,
            jvmtype="-client",
            extrajars=[jarfile, USER_CONF_DIR, STORM_DIR + "/bin"],
            args=args,
            jvmopts=["-Dstorm.jar=" + jarfile])
    def exec_storm_class(klass, jvmtype="-server", jvmopts=[], 
                  extrajars=[], args=[], fork=False):
        global CONFFILE
        all_args = [
            "java", jvmtype, get_config_opts(),
            "-Dstorm.home=" + STORM_DIR, 
            "-Djava.library.path=" + confvalue("java.library.path", extrajars),
            "-Dstorm.conf.file=" + CONFFILE,
            "-cp", get_classpath(extrajars),
        ] + jvmopts + [klass] + list(args)
        print "Running: " + " ".join(all_args)
        if fork:
            os.spawnvp(os.P_WAIT, "java", all_args)
        else:
            os.execvp("java", all_args) # replaces the current process and
            never returns

    exec_storm_class说白了就是要运行传进来了的WordCountTopology类中main函数,再看看main函数的实现

    public static void main(String[] args) throws Exception {
        TopologyBuilder builder = new TopologyBuilder();
    
        builder.setSpout("spout", new RandomSentenceSpout(), 5);
        builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
        builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));
    
        Config conf = new Config();
        conf.setDebug(true);
    
        if (args != null && args.length > 0) {
          conf.setNumWorkers(3);
    
          StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
        }
    }

    对于storm client侧来说,最主要的函数StormSubmitter露出了真面目,submitTopology才是我们真正要研究的重点。

    public static void submitTopology(String name, Map stormConf,
     StormTopology topology, SubmitOptions opts) 
    throws AlreadyAliveException, InvalidTopologyException 
    {
            if(!Utils.isValidConf(stormConf)) {
                throw new IllegalArgumentException("Storm conf is not valid. Must be json-serializable");
            }
            stormConf = new HashMap(stormConf);
            stormConf.putAll(Utils.readCommandLineOpts());
            Map conf = Utils.readStormConfig();
            conf.putAll(stormConf);
            try {
                String serConf = JSONValue.toJSONString(stormConf);
                if(localNimbus!=null) {
                    LOG.info("Submitting topology " + name + " in local mode");
                    localNimbus.submitTopology(name, null, serConf, topology);
                } else {
                    NimbusClient client = NimbusClient.getConfiguredClient(conf);
                    if(topologyNameExists(conf, name)) {
                        throw new RuntimeException("Topology with name `"
                        + name 
                        + "` already exists on cluster");
                    }
                    submitJar(conf);
                    try {
                        LOG.info("Submitting topology " +  name 
                        + " in distributed mode with conf " + serConf);
                        if(opts!=null) {
                            client.getClient().submitTopologyWithOpts(name, submittedJar, serConf, topology, opts);                    
                        } else {
                            // this is for backwards compatibility
                            client.getClient().submitTopology(name, submittedJar, serConf, topology);                                            
                        }
                    } catch(InvalidTopologyException e) {
                        LOG.warn("Topology submission exception", e);
                        throw e;
                    } catch(AlreadyAliveException e) {
                        LOG.warn("Topology already alive exception", e);
                        throw e;
                    } finally {
                        client.close();
                    }
                }
                LOG.info("Finished submitting topology: " +  name);
            } catch(TException e) {
                throw new RuntimeException(e);
            }
        }

    submitTopology函数其实主要就干两件事,一上传jar文件到storm cluster,另一件事通知storm cluster文件已经上传完毕,你可以执行某某某topology了.

    先看上传jar文件对应的函数submitJar,其调用关系如下图所示

    再看第二步中的调用关系,图是我用tikz/pgf写的,生成的是pdf格式。

    在上述两幅调用关系图中,处于子树位置的函数都曾在storm.thrift中声明,如果此刻已经忘记了的点话,可以翻看一下前面1.3节中有关storm.thrift的描述。client侧的这些函数都是由thrift自动生成的。

    由于篇幅和时间的关系,在storm client侧submit topology的时候,非常重要的函数还有TopologyBuilder.java中的源码。

    nimbus

    storm client侧通过thrift接口向nimbus发送了了jar并且通过预先定义好的submitTopologyWithOpts来处理上传的topology,那么nimbus是如何一步步的进行文件接收并将其任务细化最终下达给supervisor的呢。

    submitTopologyWithOpts

    一切还是要从thrift说起,supervisor.clj中的service-handler具体实现了thrift定义的Nimbus接口,代码这里就不罗列了,太占篇幅。主要看其是如何实现submitTopologyWithOpts

    (^void submitTopologyWithOpts
            [this ^String storm-name ^String uploadedJarLocation ^String serializedConf ^StormTopology topology
             ^SubmitOptions submitOptions]
            (try
              (assert (not-nil? submitOptions))
              (validate-topology-name! storm-name)
              (check-storm-active! nimbus storm-name false)
              (.validate ^backtype.storm.nimbus.ITopologyValidator (:validator nimbus)
                         storm-name
                         (from-json serializedConf)
                         topology)
              (swap! (:submitted-count nimbus) inc)
              (let [storm-id (str storm-name "-" @(:submitted-count nimbus) "-" (current-time-secs))
                    storm-conf (normalize-conf
                                conf
                                (-> serializedConf
                                    from-json
                                    (assoc STORM-ID storm-id)
                                  (assoc TOPOLOGY-NAME storm-name))
                                topology)
                    total-storm-conf (merge conf storm-conf)
                    topology (normalize-topology total-storm-conf topology)
                    topology (if (total-storm-conf TOPOLOGY-OPTIMIZE)
                               (optimize-topology topology)
                               topology)
                    storm-cluster-state (:storm-cluster-state nimbus)]
                (system-topology! total-storm-conf topology) ;; this validates the structure of the topology
                (log-message "Received topology submission for " storm-name " with conf " storm-conf)
                ;; lock protects against multiple topologies being submitted at once and
                ;; cleanup thread killing topology in b/w assignment and starting the topology
                (locking (:submit-lock nimbus)
                  (setup-storm-code conf storm-id uploadedJarLocation storm-conf topology)
                  (.setup-heartbeats! storm-cluster-state storm-id)
                  (let [thrift-status->kw-status {TopologyInitialStatus/INACTIVE :inactive
                                                  TopologyInitialStatus/ACTIVE :active}]
                    (start-storm nimbus storm-name storm-id (thrift-status->kw-status (.get_initial_status submitOptions))))
                  (mk-assignments nimbus)))
              (catch Throwable e
                (log-warn-error e "Topology submission exception. (topology name='" storm-name "')")
                (throw e))))

    storm cluster在zookeeper server上创建的目录结构。目录结构相关的源文件是config.clj.

    白话一下上面这个函数的执行逻辑,对上传的topology作必要的检测,包括名字,文件内容及格式,好比你进一家公司上班之前做的体检。这些工作都完成之后进入关键区域,是进入关键区域所以上锁,呵呵。

    normalize-topology

    (defn all-components [^StormTopology topology]
      (apply merge {}
             (for [f thrift/STORM-TOPOLOGY-FIELDS]
               (.getFieldValue topology f)
               )))

    一旦列出所有的components,就可以读出这些component的配置信息。

    mk-assignments

    在这关键区域内执行的重点就是函数mk-assignments,mk-assignment有两个主要任务,第一是计算出有多少task,即有多少个spout,多少个bolt,第二就是在刚才的计算基础上通过调用zookeeper应用接口,写入assignment,以便supervisor感知到有新的任务需要认领。

    先说第二点,因为逻辑简单。在mk-assignment中执行如下代码在zookeeper中设定相应的数据以便supervisor能够感知到有新的任务产生

    (doseq [[topology-id assignment] new-assignments
                :let [existing-assignment (get existing-assignments topology-id)
                      topology-details (.getById topologies topology-id)]]
          (if (= existing-assignment assignment)
            (log-debug "Assignment for " topology-id " hasn't changed")
            (do
              (log-message "Setting new assignment for topology id " topology-id ": " 
                      (pr-str assignment))
              (.set-assignment! storm-cluster-state topology-id assignment)
              )))

    调用关系如下图所示

    而第一点涉及到的计算相对繁杂,需要一一仔细道来。其实第一点中非常重要的课题就是如何进行任务的分发,即scheduling.
    也许你已经注意到目录src/clj/backtype/storm/scheduler,或者注意到storm.yaml中与scheduler相关的配置项。那么这个scheduler到底是在什么时候起作用的呢。mk-assignments会间接调用到这么一个名字看起来奇怪异常的函数。compute-new-topology->executor->node+por,也就是在这么很奇怪的函数内,scheduler被调用

    _ (.schedule (:scheduler nimbus) topologies cluster)
    new-scheduler-assignments (.getAssignments cluster)
    ;; add more information to convert SchedulerAssignment to Assignment
    new-topology->executor->node+port (compute-topology->executor->node+port new-scheduler-assignments)]

    schedule计算出来的assignments保存于Cluster.java中,这也是为什么new-scheduler-assignment要从其中读取数据的缘由所在。有了assignment,就可以计算出相应的node和port,其实就是这个任务应该交由哪个supervisor上的worker来执行。

     storm在zookeeper server上创建的目录结构如下图所示

    有了这个目录结构,现在要解答的问题是在topology在提交的时候要写哪几个目录?assignments目录下会新创建一个新提交的topology的目录,在这个topology中需要写的数据,其数据结构是什么样子?

    supervisor

    一旦有新的assignment被写入到zookeeper中,supervisor中的回调函数mk-synchronize-supervisor立马被唤醒执行

    主要执行逻辑就是读入zookeeper server中新的assignments全集与已经运行与本机上的assignments作比较,区别出哪些是新增的。在sync-processes函数中将运行具体task的worker拉起。

     要想讲清楚topology提交过程中,supervisor需要做哪些动作,最主要的是去理解下面两个函数的处理逻辑。

    • mk-synchronize-supervisor  当在zookeeper server的assignments子目录内容有所变化时,supervisor收到相应的notification, 处理这个notification的回调函数即为mk-synchronize-supervisor,mk-sychronize-supervisor读取所有的assignments即便它不是由自己处理,并将所有assignment的具体信息读出。尔后判断分析出哪些assignment是分配给自己处理的,在这些分配的assignment中,哪些是新增的。知道了新增的assignment之后,从nimbus的相应目录下载jar文件,用户自己的处理逻辑代码并没有上传到zookeeper server而是在nimbus所在的机器硬盘上。
    • sync-processes mk-synchronize-supervisor预处理过完与assignment相关的操作后,将真正启动worker的动作交给event-manager, event-manager运行在另一个独立的线程中,这个线程中进行处理的一个主要函数即sync-processes. sync-processes会将当前运行着的worker全部kill,然后指定新的运行参数,重新拉起worker.
    (defn mk-synchronize-supervisor [supervisor sync-processes event-manager processes-event-manager]
      (fn this []
        (let [conf (:conf supervisor)
              storm-cluster-state (:storm-cluster-state supervisor)
              ^ISupervisor isupervisor (:isupervisor supervisor)
              ^LocalState local-state (:local-state supervisor)
              sync-callback (fn [& ignored] (.add event-manager this))
              assignments-snapshot (assignments-snapshot storm-cluster-state sync-callback)
              storm-code-map (read-storm-code-locations assignments-snapshot)
              downloaded-storm-ids (set (read-downloaded-storm-ids conf))
              ;;read assignments from zookeeper
              all-assignment (read-assignments
                               assignments-snapshot
                               (:assignment-id supervisor))
              new-assignment (->> all-assignment
                                  (filter-key #(.confirmAssigned isupervisor %)))
              ;;task在assignment中
              assigned-storm-ids (assigned-storm-ids-from-port-assignments new-assignment)
              existing-assignment (.get local-state LS-LOCAL-ASSIGNMENTS)]
          (log-debug "Synchronizing supervisor")
          (log-debug "Storm code map: " storm-code-map)
          (log-debug "Downloaded storm ids: " downloaded-storm-ids)
          (log-debug "All assignment: " all-assignment)
          (log-debug "New assignment: " new-assignment)
          
          ;; download code first
          ;; This might take awhile
          ;;   - should this be done separately from usual monitoring?
          ;; should we only download when topology is assigned to this supervisor?
          (doseq [[storm-id master-code-dir] storm-code-map]
            (when (and (not (downloaded-storm-ids storm-id))
                       (assigned-storm-ids storm-id))
              (log-message "Downloading code for storm id "
                 storm-id
                 " from "
                 master-code-dir)
              (download-storm-code conf storm-id master-code-dir)
              (log-message "Finished downloading code for storm id "
                 storm-id
                 " from "
                 master-code-dir)
              ))
    
          (log-debug "Writing new assignment "
                     (pr-str new-assignment))
          (doseq [p (set/difference (set (keys existing-assignment))
                                    (set (keys new-assignment)))]
            (.killedWorker isupervisor (int p)))
          (.assigned isupervisor (keys new-assignment))
          (.put local-state
                LS-LOCAL-ASSIGNMENTS
                new-assignment)
          (reset! (:curr-assignment supervisor) new-assignment)
          ;; remove any downloaded code that's no longer assigned or active
          ;; important that this happens after setting the local assignment so that
          ;; synchronize-supervisor doesn't try to launch workers for which the
          ;; resources don't exist
          (doseq [storm-id downloaded-storm-ids]
            (when-not (assigned-storm-ids storm-id)
              (log-message "Removing code for storm id "
                           storm-id)
              (rmr (supervisor-stormdist-root conf storm-id))
              ))
          (.add processes-event-manager sync-processes)
          )))

    注意加亮行
    assignments-snapshot是去zookeeper server中的assignments子目录读取所有的topology-ids及其内容,会使用zk/get-children及zk/get-data原语。调用关系如下

    assignments-snapshot-->assignment-info-->clusterstate/get-data-->zk/get-data

    代码下载 (download-storm-code conf storm-id master-code-dir),storm client将代码上传到nimbus,nimbus将其放到自己指定的目录,这个目录结构在nimbus所在机器的文件系统上可以找到。supervisor现在要做的事情就是去将nimbus上的代码下载复制到本地。

     (.add processes-event-manager sync-processes) 添加事件到event-manager,event-manager是一个独立运行的线程,新添加的事件处理函数为sync-processes, sync-processes的主要功能在本节开始处已经描述。

    (defn sync-processes [supervisor]
      (let [conf (:conf supervisor)
            ^LocalState local-state (:local-state supervisor)
            assigned-executors (defaulted (.get local-state LS-LOCAL-ASSIGNMENTS) {})
            now (current-time-secs)
            allocated (read-allocated-workers supervisor assigned-executors now)
            keepers (filter-val
                     (fn [[state _]] (= state :valid))
                     allocated)
            keep-ports (set (for [[id [_ hb]] keepers] (:port hb)))
            reassign-executors (select-keys-pred (complement keep-ports) assigned-executors)
            new-worker-ids (into
                            {}
                            (for [port (keys reassign-executors)]
                              [port (uuid)]))
            ]
        ;; 1. to kill are those in allocated that are dead or disallowed
        ;; 2. kill the ones that should be dead
        ;;     - read pids, kill -9 and individually remove file
        ;;     - rmr heartbeat dir, rmdir pid dir, rmdir id dir (catch exception and log)
        ;; 3. of the rest, figure out what assignments aren't yet satisfied
        ;; 4. generate new worker ids, write new "approved workers" to LS
        ;; 5. create local dir for worker id
        ;; 5. launch new workers (give worker-id, port, and supervisor-id)
        ;; 6. wait for workers launch
      
        (log-debug "Syncing processes")
        (log-debug "Assigned executors: " assigned-executors)
        (log-debug "Allocated: " allocated)
        (doseq [[id [state heartbeat]] allocated]
          (when (not= :valid state)
            (log-message
             "Shutting down and clearing state for id " id
             ". Current supervisor time: " now
             ". State: " state
             ", Heartbeat: " (pr-str heartbeat))
            (shutdown-worker supervisor id)
            ))
        (doseq [id (vals new-worker-ids)]
          (local-mkdirs (worker-pids-root conf id)))
        (.put local-state LS-APPROVED-WORKERS
              (merge
               (select-keys (.get local-state LS-APPROVED-WORKERS)
                            (keys keepers))
               (zipmap (vals new-worker-ids) (keys new-worker-ids))
               ))
        (wait-for-workers-launch
         conf
         (dofor [[port assignment] reassign-executors]
           (let [id (new-worker-ids port)]
             (log-message "Launching worker with assignment "
                          (pr-str assignment)
                          " for this supervisor "
                          (:supervisor-id supervisor)
                          " on port "
                          port
                          " with id "
                          id
                          )
             (launch-worker supervisor
                            (:storm-id assignment)
                            port
                            id)
             id)))
        ))

    worker

    worker是被supervisor通过函数launch-worker带起来的。并没有外部的指令显示的启动或停止worker,当然kill除外, :).

    worker的主要任务有

    •  发送心跳消息
    •  接收外部tuple的消息
    •  向外发送tuple消息

    这些工作集中在mk-worker指定处理句柄。源码在此处就不一一列出了。

    executor

    executor是通过worker执行mk-executor完成初始化过程。

    (defn mk-executor [worker executor-id]
     (let [executor-data (mk-executor-data worker executor-id)
       _ (log-message "Loading executor " (:component-id executor-data) ":" (pr-str executor-id))
       task-datas (->> executor-data
                       :task-ids
                       (map (fn [t] [t (task/mk-task executor-data t)]))
                       (into {})
                       (HashMap.))
       _ (log-message "Loaded executor tasks " (:component-id executor-data) ":" (pr-str executor-id))
       report-error-and-die (:report-error-and-die executor-data)
       component-id (:component-id executor-data)
    
       ;; starting the batch-transfer->worker ensures that anything publishing to that queue 
       ;; doesn't block (because it's a single threaded queue and the caching/consumer started
       ;; trick isn't thread-safe)
       system-threads [(start-batch-transfer->worker-handler! worker executor-data)]
       handlers (with-error-reaction report-error-and-die
                  (mk-threads executor-data task-datas))
       threads (concat handlers system-threads)]    
        (setup-ticks! worker executor-data)
    
        (log-message "Finished loading executor " component-id ":" (pr-str executor-id))
        ;; TODO: add method here to get rendered stats... have worker call that when heartbeating
        (reify
          RunningExecutor
          (render-stats [this]
            (stats/render-stats! (:stats executor-data)))
          (get-executor-id [this]
            executor-id )
          Shutdownable
          (shutdown
            [this]
            (log-message "Shutting down executor " component-id ":" (pr-str executor-id))
            (disruptor/halt-with-interrupt! (:receive-queue executor-data))
            (disruptor/halt-with-interrupt! (:batch-transfer-queue executor-data))
            (doseq [t threads]
              (.interrupt t)
              (.join t))
            
            (doseq [user-context (map :user-context (vals task-datas))]
              (doseq [hook (.getHooks user-context)]
                (.cleanup hook)))
            (.disconnect (:storm-cluster-state executor-data))
            (when @(:open-or-prepare-was-called? executor-data)
              (doseq [obj (map :object (vals task-datas))]
                (close-component executor-data obj)))
            (log-message "Shut down executor " component-id ":" (pr-str executor-id)))
            )))

    上述代码中mk-threads用来为spout或者bolt创建thread.

    mk-threads使用到了clojure的函数重载机制,借用一下java或c++的术语吧。在clojure中使用defmulti来声明一个重名函数。

    mk-threads函数有点长而且逻辑变得更为复杂,还是先从大体上有个概念为好,再去慢慢查看细节。

    • async-loop 线程运行的主函数,类似于pthread_create中的参数start_routine
    • tuple-action-fn spout和bolt都会收到tuple,处理tuple的逻辑不同但有一个同名的处理函数即是tuple-action-fn
    • event-handler 在这个创建的线程中又使用了disruptor模式,disruptor模式一个重要的概念就是要定义相应的event-handler。上面所讲的tupleaction-fn就是在event-handler中被处理。

    调用逻辑如下图所示

    spout

    先来看看如果是spout,mk-threads的处理步骤是啥样的,先说这个async-loops

    [(async-loop
          (fn []
            ;; If topology was started in inactive state, don't call (.open spout) until it's activated first.
            (while (not @(:storm-active-atom executor-data))
              (Thread/sleep 100))
            
            (log-message "Opening spout " component-id ":" (keys task-datas))
            (doseq [[task-id task-data] task-datas
                    :let [^ISpout spout-obj (:object task-data)
                          tasks-fn (:tasks-fn task-data)
                          send-spout-msg (fn [out-stream-id values message-id out-task-id]
                                           (.increment emitted-count)
       (let [out-tasks (if out-task-id
                         (tasks-fn out-task-id out-stream-id values)
                         (tasks-fn out-stream-id values))
             rooted? (and message-id has-ackers?)
             root-id (if rooted? (MessageId/generateId rand))
             out-ids (fast-list-for [t out-tasks] (if rooted? (MessageId/generateId rand)))]
         (fast-list-iter [out-task out-tasks id out-ids]
                         (let [tuple-id (if rooted?
                                          (MessageId/makeRootId root-id id)
                                          (MessageId/makeUnanchored))
                               out-tuple (TupleImpl. worker-context
                                                     values
                                                     task-id
                                                     out-stream-id
                                                     tuple-id)]
                           (transfer-fn out-task
                                        out-tuple
                                        overflow-buffer)
                           ))
         (if rooted?
           (do
             (.put pending root-id [task-id
                                    message-id
                                    {:stream out-stream-id :values values}
                                    (if (sampler) (System/currentTimeMillis))])
             (task/send-unanchored task-data
                                   ACKER-INIT-STREAM-ID
                                   [root-id (bit-xor-vals out-ids) task-id]
                                   overflow-buffer))
           (when message-id
             (ack-spout-msg executor-data task-data message-id
                            {:stream out-stream-id :values values}
                            (if (sampler) 0))))
         (or out-tasks [])
         ))]]
              (builtin-metrics/register-all (:builtin-metrics task-data) storm-conf (:user-context task-data))
              (builtin-metrics/register-queue-metrics {:sendqueue (:batch-transfer-queue executor-data)
                                                       :receive receive-queue}
                                                      storm-conf (:user-context task-data))
    
              (.open spout-obj
                     storm-conf
                     (:user-context task-data)
                     (SpoutOutputCollector.
                      (reify ISpoutOutputCollector
                        (^List emit [this ^String stream-id ^List tuple ^Object message-id]
                          (send-spout-msg stream-id tuple message-id nil)
                          )
                        (^void emitDirect [this ^int out-task-id ^String stream-id
                                           ^List tuple ^Object message-id]
                          (send-spout-msg stream-id tuple message-id out-task-id)
                          )
                        (reportError [this error]
                          (report-error error)
                          )))))
            (reset! open-or-prepare-was-called? true) 
            (log-message "Opened spout " component-id ":" (keys task-datas))
            (setup-metrics! executor-data)
            
            (disruptor/consumer-started! (:receive-queue executor-data))
            (fn []
              ;; This design requires that spouts be non-blocking
              (disruptor/consume-batch receive-queue event-handler)
              
              ;; try to clear the overflow-buffer
              (try-cause
                (while (not (.isEmpty overflow-buffer))
                  (let [[out-task out-tuple] (.peek overflow-buffer)]
                    (transfer-fn out-task out-tuple false nil)
                    (.removeFirst overflow-buffer)))
              (catch InsufficientCapacityException e
                ))
              
              (let [active? @(:storm-active-atom executor-data)
                    curr-count (.get emitted-count)]
                (if (and (.isEmpty overflow-buffer)
                         (or (not max-spout-pending)
                             (< (.size pending) max-spout-pending)))
                  (if active?
                    (do
                      (when-not @last-active
                        (reset! last-active true)
                        (log-message "Activating spout " component-id ":" (keys task-datas))
                        (fast-list-iter [^ISpout spout spouts] (.activate spout)))
                   
                      (fast-list-iter [^ISpout spout spouts] (.nextTuple spout)))
                    (do
                      (when @last-active
                        (reset! last-active false)
                        (log-message "Deactivating spout " component-id ":" (keys task-datas))
                        (fast-list-iter [^ISpout spout spouts] (.deactivate spout)))
                      ;; TODO: log that it's getting throttled
                      (Time/sleep 100))))
                (if (and (= curr-count (.get emitted-count)) active?)
                  (do (.increment empty-emit-streak)
                      (.emptyEmit spout-wait-strategy (.get empty-emit-streak)))
                  (.set empty-emit-streak 0)
                  ))           
              0))
          :kill-fn (:report-error-and-die executor-data)
          :factory? true
          :thread-name component-id)]))

    对于spout来说,如何处理收到的数据呢,这一切都要与disruptor/consume-batch关联起来,注意上述代码红色加亮部分内容。

    再看event-handler的定义, event-handler (mk-task-receiver executor-data tuple-action-fn)。上面的调用关系图就可以串起来了。

    spout中的tuple-action-fn定义如下,这个tuple-action-fn很重要,如果诸位看官还记得本博前一篇讲解tuple消息发送途径文章内容的话,tuple接收的处理逻辑尽在于此了。

    (fn [task-id ^TupleImpl tuple]
      [stream-id (.getSourceStreamId tuple)]
     ondp = stream-id
     Constants/SYSTEM_TICK_STREAM_ID (.rotate pending)
     Constants/METRICS_TICK_STREAM_ID (metrics-tick executor-data task-datas tuple)
     (let [id (.getValue tuple 0)
           [stored-task-id spout-id tuple-finished-info start-time-ms] (.remove pending id)]
       (when spout-id
         (when-not (= stored-task-id task-id)
           (throw-runtime "Fatal error, mismatched task ids: " task-id " " stored-task-id))
         (let [time-delta (if start-time-ms (time-delta-ms start-time-ms))]
           (condp = stream-id
             ACKER-ACK-STREAM-ID (ack-spout-msg executor-data (get task-datas task-id)
                                                spout-id tuple-finished-info time-delta)
             ACKER-FAIL-STREAM-ID (fail-spout-msg executor-data (get task-datas task-id)
                                                  spout-id tuple-finished-info time-delta)
             )))
       ;; TODO: on failure, emit tuple to failure stream
       ))))


    有关bolt相关thread的创建与消息接收处理函数就不一一罗列了,各位自行分析应该没有问题了。

  • 相关阅读:
    【转】请说出三种减少页面加载时间的方法。
    【转】Web前端性能优化——如何提高页面加载速度
    【转】数据分析sql常用整理
    【转】消息中间件系列之简单介绍
    Could not load file or assembly 'System.Core, Version=2.0.5.0 和autofac冲突的问题
    云主机与传统主机性能对比表
    真假云主机,VPS资料集合
    将网站部署到windows2003 iis6之后,出现asp.net程序页面无法访问情况
    想当然是编程最大的坑,记更新删除过期cookie无效有感
    FlashBuilder(FB/eclipse) 打开多个无效
  • 原文地址:https://www.cnblogs.com/hseagle/p/3449015.html
Copyright © 2011-2022 走看看