zoukankan      html  css  js  c++  java
  • HDU1223 Order Count 动态规划 组合数

    Order Count

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 954    Accepted Submission(s): 371


    Problem Description
    If we connect 3 numbers with "<" and "=", there are 13 cases:
    1) A=B=C
    2) A=B<C
    3) A<B=C
    4) A<B<C
    5) A<C<B
    6) A=C<B
    7) B<A=C
    8) B<A<C
    9) B<C<A
    10) B=C<A
    11) C<A=B
    12) C<A<B
    13) C<B<A

    If we connect n numbers with "<" and "=", how many cases then?
     
    Input
    The input starts with a positive integer P(0<P<1000) which indicates the number of test cases. Then on the following P lines, each line consists of a positive integer n(1<=n<=50) which indicates the amount of numbers to be connected.
     
    Output
    For each input n, you should output the amount of cases in a single line.
     
    Sample Input
    2 1 3
     
    Sample Output
    1 13

    动态规划+组合数+大数:

    从左向右,n的数,第i个数是h[i],和h[i]==h[i-1]+1或者h[i]==h[i-1]

    DP把每种情况表示出来,组合数来排列(第i个数代表谁)

    
    
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<memory.h>
    #include<cstring>
    #include<string.h> 
    using namespace std;
    long long f[60][60],ans[60];
    long long c[60][60];
    int i,j;
    void _getc()
    {
        for(i=0;i<=50;i++) c[i][0]=1;
        for(i=1;i<=50;i++) 
         for(j=1;j<=i;j++)
          c[i][j]=c[i-1][j]+c[i-1][j-1];
    }
    void _getf()
    {
        for(i=0;i<=50;i++) f[i][0]=1;
            for(i=1;i<=50;i++)
        {
              for(j=1;j<=i;j++)
               for(k=0;k<j;k++)
                 f[i][j]+=f[i][k]*c[i-k][j-k];
               ans[i]=f[i][i];
        }
    }
    int main()
    {
        int T,k;
        _getc();
        _getf();
        scanf("%d",&T);
        while(T--)  
        {
           scanf("%d",&k);
           printf("%lld
    ",ans[k]);
        }
        return 0;  
    }
    
    
    
     
    (前面代码不要拿来用。没有写高精度。后面用的模板,所以有点长)
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<memory.h>
    #include<cstring>
    #include<string> 
    using namespace std;
    #define MAXN 9999
    #define MAXSIZE 10
    #define DLEN 4
    
    class BigNum
    { 
    private: 
        int a[500];    //可以控制大数的位数 
        int len;       //大数长度
    public: 
        BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //构造函数
        BigNum(const int);       //将一个int类型的变量转化为大数
        BigNum(const char*);     //将一个字符串类型的变量转化为大数
        BigNum(const BigNum &);  //拷贝构造函数
        BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算
    
        friend istream& operator>>(istream&,  BigNum&);   //重载输入运算符
        friend ostream& operator<<(ostream&,  BigNum&);   //重载输出运算符
    
        BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算 
        BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算 
        BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算 
        BigNum operator/(const int   &) const;    //重载除法运算符,大数对一个整数进行相除运算
    
        BigNum operator^(const int  &) const;    //大数的n次方运算
        int    operator%(const int  &) const;    //大数对一个int类型的变量进行取模运算    
        bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
        bool   operator>(const int & t)const;      //大数和一个int类型的变量的大小比较
    
        void print();       //输出大数
    }; 
    BigNum::BigNum(const int b)     //将一个int类型的变量转化为大数
    { 
        int c,d = b;
        len = 0;
        memset(a,0,sizeof(a));
        while(d > MAXN)
        {
            c = d - (d / (MAXN + 1)) * (MAXN + 1); 
            d = d / (MAXN + 1);
            a[len++] = c;
        }
        a[len++] = d;
    }
    BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
    {
        int t,k,index,l,i;
        memset(a,0,sizeof(a));
        l=strlen(s);   
        len=l/DLEN;
        if(l%DLEN)
            len++;
        index=0;
        for(i=l-1;i>=0;i-=DLEN)
        {
            t=0;
            k=i-DLEN+1;
            if(k<0)
                k=0;
            for(int j=k;j<=i;j++)
                t=t*10+s[j]-'0';
            a[index++]=t;
        }
    }
    BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
    { 
        int i; 
        memset(a,0,sizeof(a)); 
        for(i = 0 ; i < len ; i++)
            a[i] = T.a[i]; 
    } 
    BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
    {
        int i;
        len = n.len;
        memset(a,0,sizeof(a)); 
        for(i = 0 ; i < len ; i++) 
            a[i] = n.a[i]; 
        return *this; 
    }
    istream& operator>>(istream & in,  BigNum & b)   //重载输入运算符
    {
        char ch[MAXSIZE*4];
        int i = -1;
        in>>ch;
        int l=strlen(ch);
        int count=0,sum=0;
        for(i=l-1;i>=0;)
        {
            sum = 0;
            int t=1;
            for(int j=0;j<4&&i>=0;j++,i--,t*=10)
            {
                sum+=(ch[i]-'0')*t;
            }
            b.a[count]=sum;
            count++;
        }
        b.len =count++;
        return in;
    
    }
    ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
    {
        int i;  
        cout << b.a[b.len - 1]; 
        for(i = b.len - 2 ; i >= 0 ; i--)
        { 
            cout.width(DLEN); 
            cout.fill('0'); 
            cout << b.a[i]; 
        } 
        return out;
    }
    
    BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
    {
        BigNum t(*this);
        int i,big;      //位数   
        big = T.len > len ? T.len : len; 
        for(i = 0 ; i < big ; i++) 
        { 
            t.a[i] +=T.a[i]; 
            if(t.a[i] > MAXN) 
            { 
                t.a[i + 1]++; 
                t.a[i] -=MAXN+1; 
            } 
        } 
        if(t.a[big] != 0)
            t.len = big + 1; 
        else
            t.len = big;   
        return t;
    }
    BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算 
    {  
        int i,j,big;
        bool flag;
        BigNum t1,t2;
        if(*this>T)
        {
            t1=*this;
            t2=T;
            flag=0;
        }
        else
        {
            t1=T;
            t2=*this;
            flag=1;
        }
        big=t1.len;
        for(i = 0 ; i < big ; i++)
        {
            if(t1.a[i] < t2.a[i])
            { 
                j = i + 1; 
                while(t1.a[j] == 0)
                    j++; 
                t1.a[j--]--; 
                while(j > i)
                    t1.a[j--] += MAXN;
                t1.a[i] += MAXN + 1 - t2.a[i]; 
            } 
            else
                t1.a[i] -= t2.a[i];
        }
        t1.len = big;
        while(t1.a[t1.len - 1] == 0 && t1.len > 1)
        {
            t1.len--; 
            big--;
        }
        if(flag)
            t1.a[big-1]=0-t1.a[big-1];
        return t1; 
    } 
    
    BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算 
    { 
        BigNum ret; 
        int i,j,up; 
        int temp,temp1;   
        for(i = 0 ; i < len ; i++)
        { 
            up = 0; 
            for(j = 0 ; j < T.len ; j++)
            { 
                temp = a[i] * T.a[j] + ret.a[i + j] + up; 
                if(temp > MAXN)
                { 
                    temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); 
                    up = temp / (MAXN + 1); 
                    ret.a[i + j] = temp1; 
                } 
                else
                { 
                    up = 0; 
                    ret.a[i + j] = temp; 
                } 
            } 
            if(up != 0) 
                ret.a[i + j] = up; 
        } 
        ret.len = i + j; 
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
            ret.len--; 
        return ret; 
    } 
    BigNum BigNum::operator/(const int & b) const   //大数对一个整数进行相除运算
    { 
        BigNum ret; 
        int i,down = 0;   
        for(i = len - 1 ; i >= 0 ; i--)
        { 
            ret.a[i] = (a[i] + down * (MAXN + 1)) / b; 
            down = a[i] + down * (MAXN + 1) - ret.a[i] * b; 
        } 
        ret.len = len; 
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
            ret.len--; 
        return ret; 
    }
    int BigNum::operator %(const int & b) const    //大数对一个int类型的变量进行取模运算    
    {
        int i,d=0;
        for (i = len-1; i>=0; i--)
        {
            d = ((d * (MAXN+1))% b + a[i])% b;  
        }
        return d;
    }
    BigNum BigNum::operator^(const int & n) const    //大数的n次方运算
    {
        BigNum t,ret(1);
        int i;
        if(n<0)
            exit(-1);
        if(n==0)
            return 1;
        if(n==1)
            return *this;
        int m=n;
        while(m>1)
        {
            t=*this;
            for( i=1;i<<1<=m;i<<=1)
            {
                t=t*t;
            }
            m-=i;
            ret=ret*t;
            if(m==1)
                ret=ret*(*this);
        }
        return ret;
    }
    bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
    { 
        int ln; 
        if(len > T.len)
            return true; 
        else if(len == T.len)
        { 
            ln = len - 1; 
            while(a[ln] == T.a[ln] && ln >= 0)
                ln--; 
            if(ln >= 0 && a[ln] > T.a[ln])
                return true; 
            else
                return false; 
        } 
        else
            return false; 
    }
    bool BigNum::operator >(const int & t) const    //大数和一个int类型的变量的大小比较
    {
        BigNum b(t);
        return *this>b;
    }
    
    void BigNum::print()    //输出大数
    { 
        int i;   
        cout << a[len - 1]; 
        for(i = len - 2 ; i >= 0 ; i--)
        { 
            cout.width(DLEN); 
            cout.fill('0'); 
            cout << a[i]; 
        } 
        cout << endl;
    }
    BigNum f[60][60],ans[60];
    BigNum c[60][60];
    int i,j,k;
    void _getc()
    {
        for(i=0;i<=50;i++) c[i][0]=1;
        for(i=1;i<=50;i++) 
         for(j=1;j<=i;j++)
          c[i][j]=c[i-1][j]+c[i-1][j-1];
    }
    void _getf()
    {
        for(i=0;i<=50;i++) f[i][0]=1;
        for(i=1;i<=50;i++)
        {
          for(j=1;j<=i;j++)
           for(k=0;k<j;k++)
            f[i][j]=f[i][j]+f[i][k]*c[i-k][j-k];
           ans[i]=f[i][i];
        }
    }
    int main()
    {
        int T,Tmp;
        _getc();
        _getf();
        scanf("%d",&T);
        while(T--)  
        {
           scanf("%d",&Tmp);
           ans[Tmp].print();
        }
        return 0;  
    }
    View Code
     
  • 相关阅读:
    mysql数据库,变长字符串、定长字符串区别
    Mysql默认密码的查找和修改
    Android-Universal-Image-Loader三大组件DisplayImageOptions、ImageLoader、ImageLoaderConfiguration详解
    if(Build.VERSION.SDK_INT>=Build.VERSION_CODES.....)
    android学习笔记一 PackageManager
    animated-rotated动画加载
    使用volatile关键字的场景
    “黄油刀”butterknife插件的使用注意事项
    android中ids.xml文件的作用
    DrawerLayout/FrameLayout/TabLayout/AppBarLayout/NestedScrolling
  • 原文地址:https://www.cnblogs.com/hua-dong/p/7603904.html
Copyright © 2011-2022 走看看