zoukankan      html  css  js  c++  java
  • HDU1024 最大M子段和问题 (单调队列优化)

    Max Sum Plus Plus

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 31583    Accepted Submission(s): 11174


    Problem Description
    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     
     
    Input
    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     
     
    Output
    Output the maximal summation described above in one line.
     
     
    Sample Input
    1 3 1 2 3 2 6 -1 4 -2 3 -2 3
     
    Sample Output
    6 8
    Hint
    Huge input, scanf and dynamic programming is recommended.
     
    不加优化:
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<memory.h>
    using namespace std;
    int dp[2][1000010],a[1000010];
    int main()
    {
        int n,m,j,i,k,Max;
        while(~scanf("%d%d",&m,&n)){
            Max=0;
            memset(dp,0,sizeof(dp));
            for(i=1;i<=n;i++) scanf("%d",&a[i]);
            for(i=1;i<=m;i++) 
             for(j=i+1;j<=n;j++){
                    dp[i%2][j]=dp[i%2][j-1]+a[j];
                    for(k=i-1;k<=j-1;k++)
                     if(dp[(i-1)%2][k]+a[j]>dp[i%2][j]) dp[i%2][j]=dp[(i-1)%2][k]+a[j];
                    if(i==m&&dp[i%2][j]>Max) Max=dp[i%2][j];
             }
             printf("%d
    ",Max);
        }
        return 0;
    }
    然后发现k的范围【i-1,j-1】之间可以直接记录一个Maxp
    emmmmm,以前做过还是搞忘了
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<memory.h>
    using namespace std;
    int dp[2][1000010],a[1000010];
    int main()
    {
        int n,m,j,i,k,Max,Maxp;
        while(~scanf("%d%d",&m,&n)){
            Max=-1000000001;
            for(i=1;i<=n;i++) scanf("%d",&a[i]);
            for(i=1;i<=n;i++) dp[0][i]=dp[1][i]=0;
            
             for(i=1;i<=m;i++) {
               Maxp=dp[(i-1)%2][i-1];
               dp[i%2][i]=dp[(i-1)%2][i-1]+a[i];
               for(j=i+1;j<=n-m+i;j++){
                    if(dp[(i-1)%2][j-1]>Maxp) Maxp=dp[(i-1)%2][j-1];
                    dp[i%2][j]=dp[i%2][j-1]+a[j];
                    if(Maxp+a[j]>dp[i%2][j]) dp[i%2][j]=Maxp+a[j];
             }
            }
             for(i=m;i<=n;i++)
               if(dp[m%2][i]>Max) Max=dp[m%2][i];
             printf("%d
    ",Max);
        }
        return 0;
    }
    至于此题的数据范围,呵呵,不存在的。






     
  • 相关阅读:
    设计原则
    最小路径和--p64--动态规划
    ssm实现数据库关键信息的动态加载
    最大二叉树--p654--递归构造
    城市天际线--p807
    长url转短url--p535
    从中序与后序遍历中构造二叉树-p106--数组,二叉树遍历
    n皇后问题--p52--回溯
    Markdown(editormd)语法解析成HTML
    NFA的实现
  • 原文地址:https://www.cnblogs.com/hua-dong/p/7603928.html
Copyright © 2011-2022 走看看