zoukankan      html  css  js  c++  java
  • POJ2891Strange Way to Express Integers (线性同余方程组)

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    线性同余方程组,终于自己写了一遍。棒棒哒。

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #define ll long long
    using namespace std;
    void Ex_gcd(ll a,ll b,ll &d,ll &x,ll &y)
    {
        if(b==0){ d=a; x=1; y=0; return ;}
        Ex_gcd(b,a%b,d,y,x); y-=a/b*x;
    }
    int main()
    {
        ll c1,c2,c,a,b,d,x,y,n;
        while(~scanf("%lld",&n)){
            bool Flag=false;
            scanf("%lld%lld",&a,&c1);
            for(int i=2;i<=n;i++) {
                scanf("%lld%lld",&b,&c2); 
                if(Flag) continue; c=c2-c1;
                Ex_gcd(a,b,d,x,y);
                if(c%d!=0) { printf("-1
    "); Flag=true;}
                x=((c/d*x)%(b/d)+b/d)%(b/d);//最小正单元 
                c1=a*x+c1;a=a*b/d;
            }    
            if(!Flag) printf("%lld
    ",c1);
        }   return 0;
    }
  • 相关阅读:
    启用div作为编辑器 添加contentEditalbe属性
    AngularJs 通过 ocLazyLoad 实现动态(懒)加载模块和依赖-转
    angularjs的懒加载
    JavaScript 中的this指向问题
    Project Euler:Problem 41 Pandigital prime
    Android 消息机制
    新西兰天维网登录发送明文password
    使用Reveal来查看别人的APP界面+白苹果不刷机解决方式
    Android中List循环遍历性能对照
    2016年最新苹果开发人员账号注冊申请流程最强具体解释!
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8052925.html
Copyright © 2011-2022 走看看