zoukankan      html  css  js  c++  java
  • POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    题意:求最小的由8组成的数,是L的倍数。

    思路:由一系列证明得到,ans=phi(N)的满足题意的最小因子。

    关键:    对于X,求其满足题意的最小因子p|X,可以这样求,枚举素因子prime,如果X/prime满足题意,则X=X/prime。

    存疑:我感觉复杂度是根号级别的,但是我看到ppt上说是log级别。 

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    using namespace std;
    #define ll long long
    ll gcd(ll a,ll b){ if(b==0) return a;return gcd(b,a%b);}
    ll qmul(ll a,ll x,ll Mod){ll res=0; a%=Mod; while(x){if(x&1) res=(res+a)%Mod;a=(a+a)%Mod;x>>=1;} return res;}
    ll qpow(ll a,ll x,ll Mod){ll res=1; a%=Mod; while(x){if(x&1LL) res=qmul(res,a,Mod); a=qmul(a,a,Mod); x>>=1;} return res;}
    ll phi(ll x)
    {
        ll tx=x,res=x;
        for(int i=2;i*i<=tx;i++){
            if(tx%i==0){
                res-=res/i;
                while(tx%i==0) tx/=i;
            }
        }
        if(tx>1) res-=res/tx;
        return res;
    }
    ll find(ll Mod,ll py) //得到最小因子满足条件 
    {
         ll n=py; ll tp[50][2]; int k=0;
         for(ll i=2;i*i<=n;i++)      //唯一分解  
           if(n%i==0){
             k++; tp[k][0]=i; tp[k][1]=0;
             while(n%i==0){
                n/=i; tp[k][1]++;
             } 
         }
         if(n>1) k++, tp[k][0]=n, tp[k][1]=1; 
         
         for(int i=1;i<=k;i++)
           for(int j=1;j<=tp[i][1];j++)
             if(qpow(10,py/tp[i][0],Mod)==1)
               py/=tp[i][0];
        return py;
    }
    int main()
    {
        ll N,M,Case=0;
        while(~scanf("%lld",&N)&&N){
            printf("Case %lld: ",++Case);
            N=N*9/gcd(N,8);
            if(gcd(N,10)!=1) printf("0
    ");
            else printf("%d
    ",find(N,phi(N)));
        } 
        return 0;
    }
  • 相关阅读:
    计算表达式的值并输出,表达式由若干个数字和运算符(只包含加号和减号)构成(C版和python版)
    联机分析场景的关键特征(OLAP)
    C语言字符串去掉指定字符
    主机或者路由器是怎样知道应当在MAC帧的首部填入什么样的硬件地址?(ARP)
    linux虚拟机重置root密码
    python获取时间串的方法
    centos离线安装docker
    前端JavaScript规范
    JQuery中的Deferred-详解和使用
    垂直居中实用三种方式
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8504959.html
Copyright © 2011-2022 走看看