zoukankan      html  css  js  c++  java
  • POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    题意:求最小的由8组成的数,是L的倍数。

    思路:由一系列证明得到,ans=phi(N)的满足题意的最小因子。

    关键:    对于X,求其满足题意的最小因子p|X,可以这样求,枚举素因子prime,如果X/prime满足题意,则X=X/prime。

    存疑:我感觉复杂度是根号级别的,但是我看到ppt上说是log级别。 

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    using namespace std;
    #define ll long long
    ll gcd(ll a,ll b){ if(b==0) return a;return gcd(b,a%b);}
    ll qmul(ll a,ll x,ll Mod){ll res=0; a%=Mod; while(x){if(x&1) res=(res+a)%Mod;a=(a+a)%Mod;x>>=1;} return res;}
    ll qpow(ll a,ll x,ll Mod){ll res=1; a%=Mod; while(x){if(x&1LL) res=qmul(res,a,Mod); a=qmul(a,a,Mod); x>>=1;} return res;}
    ll phi(ll x)
    {
        ll tx=x,res=x;
        for(int i=2;i*i<=tx;i++){
            if(tx%i==0){
                res-=res/i;
                while(tx%i==0) tx/=i;
            }
        }
        if(tx>1) res-=res/tx;
        return res;
    }
    ll find(ll Mod,ll py) //得到最小因子满足条件 
    {
         ll n=py; ll tp[50][2]; int k=0;
         for(ll i=2;i*i<=n;i++)      //唯一分解  
           if(n%i==0){
             k++; tp[k][0]=i; tp[k][1]=0;
             while(n%i==0){
                n/=i; tp[k][1]++;
             } 
         }
         if(n>1) k++, tp[k][0]=n, tp[k][1]=1; 
         
         for(int i=1;i<=k;i++)
           for(int j=1;j<=tp[i][1];j++)
             if(qpow(10,py/tp[i][0],Mod)==1)
               py/=tp[i][0];
        return py;
    }
    int main()
    {
        ll N,M,Case=0;
        while(~scanf("%lld",&N)&&N){
            printf("Case %lld: ",++Case);
            N=N*9/gcd(N,8);
            if(gcd(N,10)!=1) printf("0
    ");
            else printf("%d
    ",find(N,phi(N)));
        } 
        return 0;
    }
  • 相关阅读:
    fedora20安装hadoop-2.5.1
    超简单fedora20(linux)下JDK1.8的安装
    解决A program file was not specified in the launch configuration.问题
    java中的四则运算
    spring util命名空间
    java中常用的数据加密算法
    C语言实现栈
    百度ueditor富文本编辑器的使用
    C#进程管理程序实现
    ABP领域层-仓储
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8504959.html
Copyright © 2011-2022 走看看