zoukankan      html  css  js  c++  java
  • SPOJ:NT Games(欧拉函数)

    Katniss Everdeen after participating in Hunger Games now wants to participate in NT Games (Number Theory Games).

    As she begins President Snow provides her a number k. Then, she has to defend t back to back attacks from Haymitch Abernathy for practice. In each attack Haymitch Abernathy gives two numbers l and r, for defense she has to compute :

    IMAGE

    As she is new to number theory, help her by computing given expression.

    Input Format

    First line contain an integer, i.e. k.

    Second line contain an integer, i.e. t.

    Each of next t lines contain two integers, i.e. l & r.

    Constraints

    1<=k<=10^5

    1<=t<=10^5

    1<=l<=10^5

    l<=r<=10^5

    Output Format

    For each attack output the value of expression.

    Sample Input

    1

    1

    1 5

    Sample Output

    26

    Explanation : Just evaluate the expression.

    题意: 求题意的区间的GCD^K之和模Mod

    思路:利用前缀和思想+欧拉函数:

                Σx  (GCD(i,j)==x,j>i),枚举X,然后枚举j,根据欧拉函数得到i的数量。    

               由于询问次数多,我们预处理出答案,预处理的时候,利用前缀和思想降低复杂度。

               总的复杂度=N*(N/1+N/2+N/3+N/4+...N/N)=NlogN。

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define ll long long
    using namespace std;
    const int maxn=100000;
    const int Mod=1e9+7;
    ll phi[maxn+10],p[maxn+10],vis[maxn+10];
    ll ans[maxn+10],K,T,L,R,cnt;
    ll qpow(ll a,ll x){ ll  res=1; while(x){ if(x&1) res=res*a%Mod; a=a*a%Mod; x>>=1;} return res;}
    void getphi()
    {
        for(ll i=2;i<=maxn;i++){
            if(!vis[i]) p[++cnt]=i,phi[i]=i-1;
            for(ll j=1;j<=cnt&&p[j]*i<=maxn;j++){
                vis[i*p[j]]=1;
                phi[i*p[j]]=phi[i]*(p[j]-1);
                if(i%p[j]==0){
                    phi[i*p[j]]=phi[i]*p[j];
                    break;
                }
            }
        }
    }
    void solve()
    {
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i]+qpow(i,K))%Mod;//自己 
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i]+phi[i])%Mod;//1
        for(ll i=2;i<=maxn;i++){
            for(ll j=2;j*i<=maxn;j++)
              ans[i*j]=(ans[i*j]+qpow(i,K)*phi[j]%Mod)%Mod;
        }
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i-1]+ans[i])%Mod;
    }
    int main()
    {
        getphi();
        scanf("%lld%lld",&K,&T);    
        solve();
        while(T--){
            scanf("%lld%lld",&L,&R);
            printf("%lld
    ",((ans[R]-ans[L-1])%Mod+Mod)%Mod);
        }
        return 0;
    }
  • 相关阅读:
    Sencha Touch 使用笔记
    区数据
    省市 数据
    js校验身份证
    js 邮政编码验证
    原生js添加class
    让IE6 IE7 IE8 IE9 IE10 IE11支持Bootstrap的解决方法
    js学习笔记 Function类型属性的理解
    js学习笔记 理解原型对象
    js学习笔记 chapter5 引用类型
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8891770.html
Copyright © 2011-2022 走看看