zoukankan      html  css  js  c++  java
  • SPOJ:NT Games(欧拉函数)

    Katniss Everdeen after participating in Hunger Games now wants to participate in NT Games (Number Theory Games).

    As she begins President Snow provides her a number k. Then, she has to defend t back to back attacks from Haymitch Abernathy for practice. In each attack Haymitch Abernathy gives two numbers l and r, for defense she has to compute :

    IMAGE

    As she is new to number theory, help her by computing given expression.

    Input Format

    First line contain an integer, i.e. k.

    Second line contain an integer, i.e. t.

    Each of next t lines contain two integers, i.e. l & r.

    Constraints

    1<=k<=10^5

    1<=t<=10^5

    1<=l<=10^5

    l<=r<=10^5

    Output Format

    For each attack output the value of expression.

    Sample Input

    1

    1

    1 5

    Sample Output

    26

    Explanation : Just evaluate the expression.

    题意: 求题意的区间的GCD^K之和模Mod

    思路:利用前缀和思想+欧拉函数:

                Σx  (GCD(i,j)==x,j>i),枚举X,然后枚举j,根据欧拉函数得到i的数量。    

               由于询问次数多,我们预处理出答案,预处理的时候,利用前缀和思想降低复杂度。

               总的复杂度=N*(N/1+N/2+N/3+N/4+...N/N)=NlogN。

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define ll long long
    using namespace std;
    const int maxn=100000;
    const int Mod=1e9+7;
    ll phi[maxn+10],p[maxn+10],vis[maxn+10];
    ll ans[maxn+10],K,T,L,R,cnt;
    ll qpow(ll a,ll x){ ll  res=1; while(x){ if(x&1) res=res*a%Mod; a=a*a%Mod; x>>=1;} return res;}
    void getphi()
    {
        for(ll i=2;i<=maxn;i++){
            if(!vis[i]) p[++cnt]=i,phi[i]=i-1;
            for(ll j=1;j<=cnt&&p[j]*i<=maxn;j++){
                vis[i*p[j]]=1;
                phi[i*p[j]]=phi[i]*(p[j]-1);
                if(i%p[j]==0){
                    phi[i*p[j]]=phi[i]*p[j];
                    break;
                }
            }
        }
    }
    void solve()
    {
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i]+qpow(i,K))%Mod;//自己 
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i]+phi[i])%Mod;//1
        for(ll i=2;i<=maxn;i++){
            for(ll j=2;j*i<=maxn;j++)
              ans[i*j]=(ans[i*j]+qpow(i,K)*phi[j]%Mod)%Mod;
        }
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i-1]+ans[i])%Mod;
    }
    int main()
    {
        getphi();
        scanf("%lld%lld",&K,&T);    
        solve();
        while(T--){
            scanf("%lld%lld",&L,&R);
            printf("%lld
    ",((ans[R]-ans[L-1])%Mod+Mod)%Mod);
        }
        return 0;
    }
  • 相关阅读:
    java基础 第六章 下(抽象数据类型,面向过程,面向对象)
    java基础 第六章 上(二维数组)
    java基础 第五章 下(选择排序,冒泡排序)
    java基础 第五章 上(数组的第二种定义方法)
    java基础 补充(JVM 划分内存)
    java基础 第四章 下(数组)
    java基础 第四章 上(加载过程,重载)
    java基础 第三章 下(方法)
    java基础 第三章 上(终止循环 break,continue)
    Annotation 注解
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8891770.html
Copyright © 2011-2022 走看看