zoukankan      html  css  js  c++  java
  • SPOJ:NT Games(欧拉函数)

    Katniss Everdeen after participating in Hunger Games now wants to participate in NT Games (Number Theory Games).

    As she begins President Snow provides her a number k. Then, she has to defend t back to back attacks from Haymitch Abernathy for practice. In each attack Haymitch Abernathy gives two numbers l and r, for defense she has to compute :

    IMAGE

    As she is new to number theory, help her by computing given expression.

    Input Format

    First line contain an integer, i.e. k.

    Second line contain an integer, i.e. t.

    Each of next t lines contain two integers, i.e. l & r.

    Constraints

    1<=k<=10^5

    1<=t<=10^5

    1<=l<=10^5

    l<=r<=10^5

    Output Format

    For each attack output the value of expression.

    Sample Input

    1

    1

    1 5

    Sample Output

    26

    Explanation : Just evaluate the expression.

    题意: 求题意的区间的GCD^K之和模Mod

    思路:利用前缀和思想+欧拉函数:

                Σx  (GCD(i,j)==x,j>i),枚举X,然后枚举j,根据欧拉函数得到i的数量。    

               由于询问次数多,我们预处理出答案,预处理的时候,利用前缀和思想降低复杂度。

               总的复杂度=N*(N/1+N/2+N/3+N/4+...N/N)=NlogN。

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define ll long long
    using namespace std;
    const int maxn=100000;
    const int Mod=1e9+7;
    ll phi[maxn+10],p[maxn+10],vis[maxn+10];
    ll ans[maxn+10],K,T,L,R,cnt;
    ll qpow(ll a,ll x){ ll  res=1; while(x){ if(x&1) res=res*a%Mod; a=a*a%Mod; x>>=1;} return res;}
    void getphi()
    {
        for(ll i=2;i<=maxn;i++){
            if(!vis[i]) p[++cnt]=i,phi[i]=i-1;
            for(ll j=1;j<=cnt&&p[j]*i<=maxn;j++){
                vis[i*p[j]]=1;
                phi[i*p[j]]=phi[i]*(p[j]-1);
                if(i%p[j]==0){
                    phi[i*p[j]]=phi[i]*p[j];
                    break;
                }
            }
        }
    }
    void solve()
    {
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i]+qpow(i,K))%Mod;//自己 
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i]+phi[i])%Mod;//1
        for(ll i=2;i<=maxn;i++){
            for(ll j=2;j*i<=maxn;j++)
              ans[i*j]=(ans[i*j]+qpow(i,K)*phi[j]%Mod)%Mod;
        }
        for(ll i=1;i<=maxn;i++) ans[i]=(ans[i-1]+ans[i])%Mod;
    }
    int main()
    {
        getphi();
        scanf("%lld%lld",&K,&T);    
        solve();
        while(T--){
            scanf("%lld%lld",&L,&R);
            printf("%lld
    ",((ans[R]-ans[L-1])%Mod+Mod)%Mod);
        }
        return 0;
    }
  • 相关阅读:
    redis官方网站及文档
    kafka 官网帮助文档
    elasticsearch 官方入门 及 API
    解决Maven出现Plugin execution not covered by lifecycle configuration 错误
    linux下scp用法
    Spring AOP 实现原理
    深入浅出spring IOC中三种依赖注入方式
    Servlet API 中文版
    【转】httpservlet 文章
    jsp request 对象详解
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8891770.html
Copyright © 2011-2022 走看看