zoukankan      html  css  js  c++  java
  • CodeForces

    Zxr960115 is owner of a large farm. He feeds m cute cats and employs p feeders. There's a straight road across the farm and n hills along the road, numbered from 1 to n from left to right. The distance between hill i and (i - 1) is di meters. The feeders live in hill 1.

    One day, the cats went out to play. Cat i went on a trip to hill hi, finished its trip at time ti, and then waited at hill hi for a feeder. The feeders must take all the cats. Each feeder goes straightly from hill 1 to n without waiting at a hill and takes all the waiting cats at each hill away. Feeders walk at a speed of 1 meter per unit time and are strong enough to take as many cats as they want.

    For example, suppose we have two hills (d2 = 1) and one cat that finished its trip at time 3 at hill 2 (h1 = 2). Then if the feeder leaves hill 1 at time 2 or at time 3, he can take this cat, but if he leaves hill 1 at time 1 he can't take it. If the feeder leaves hill 1 at time 2, the cat waits him for 0 time units, if the feeder leaves hill 1 at time 3, the cat waits him for 1 time units.

    Your task is to schedule the time leaving from hill 1 for each feeder so that the sum of the waiting time of all cats is minimized.

    Input

    The first line of the input contains three integers n, m, p (2 ≤ n ≤ 105, 1 ≤ m ≤ 105, 1 ≤ p ≤ 100).

    The second line contains n - 1 positive integers d2, d3, ..., dn (1 ≤ di < 104).

    Each of the next m lines contains two integers hi and ti (1 ≤ hi ≤ n, 0 ≤ ti ≤ 109).

    Output

    Output an integer, the minimum sum of waiting time of all cats.

    Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.

    Examples

    Input
    4 6 2
    1 3 5
    1 0
    2 1
    4 9
    1 10
    2 10
    3 12
    Output
    3

    题意:有一些猫,放在一些位置,人走到每个猫的时间已知,给个猫出现的时间已知,假设派出一个人,可以自由安排其出发时间,沿途已经出现的猫pick掉,猫等待的时间是被pick的时间减去出现的时间t,t>=0。现在有P个人,问总时间T最小是多少。

    思路:对猫: 人time+猫dis-猫time。把c[i]-t[i]排序,那么就成为了把M个数划分位P个区间,每个区间的值=所有数与最大数的差值。

          DP[i][j]=min DP[k][j-1]+c[i]*(i-k)-(sum[i]-sum[k]); 

          转化:B=-c[i]*k+(dp[k][j-1]+sum[k])+c[i]*i-sum[i];

          方程的斜率为k=c[i];y= (dp[k][j-1]+sum[k]) ;截距B=DP[i][j];常数C=c[i]*i-sum[i];

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=100010;
    ll d[maxn],c[maxn],sum[maxn],dp[maxn][101],t;
    int q[maxn],head,tail;
    ll getans(int i,int j,int k){ return dp[k][j-1]+c[i]*(i-k)-(sum[i]-sum[k]); }
    ll Y(int k,int j){ return dp[k][j-1]+sum[k]; }
    int main()
    {
        int N,M,P,i,j,h;
        scanf("%d%d%d",&N,&M,&P);
        for(i=2;i<=N;i++) scanf("%I64d",&d[i]),d[i]+=d[i-1];
        for(i=1;i<=M;i++){
            scanf("%d%I64d",&h,&t);
            c[i]=t-d[h];
        }
        sort(c+1,c+M+1);
        for(i=1;i<=M;i++) sum[i]=sum[i-1]+c[i];
        for(i=1;i<=M;i++) dp[i][1]=c[i]*(i-1)-sum[i-1];
        for(j=2;j<=P;j++){
            head=tail=0;
            for(i=1;i<=M;i++){
                while(tail>head&&Y(q[head+1],j)-Y(q[head],j)<c[i]*(q[head+1]-q[head])) head++;
                dp[i][j]=getans(i,j,q[head]);
                while(tail>head&&(Y(i,j)-Y(q[tail],j))*(q[tail]-q[tail-1])<(Y(q[tail],j)-Y(q[tail-1],j))*(i-q[tail])) tail--;
                q[++tail]=i;
            }
        }
        printf("%I64d
    ",dp[M][P]);
        return 0;
    } 

     经验:弹出队首时,可以直接通过比较结果获得。

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=100011;
    ll d[maxn],c[maxn],sum[maxn],dp[maxn][101],t;
    int q[maxn],head,tail;
    ll getans(int i,int j,int k){ return dp[k][j-1]+c[i]*(i-k)-(sum[i]-sum[k]); }
    ll Y(int k,int j){ return dp[k][j-1]+sum[k]; }
    int main()
    {
        int N,M,P,i,j,h;
        scanf("%d%d%d",&N,&M,&P);
        for(i=2;i<=N;i++) scanf("%I64d",&d[i]),d[i]+=d[i-1];
        for(i=1;i<=M;i++){
            scanf("%d%I64d",&h,&t);
            c[i]=t-d[h];
        }
        sort(c+1,c+M+1);
        for(i=1;i<=M;i++) sum[i]=sum[i-1]+c[i];
        for(i=1;i<=M;i++) dp[i][1]=c[i]*(i-1)-sum[i-1];
        for(j=2;j<=P;j++){
            head=tail=0;
            for(i=1;i<=M;i++){
                while(tail>head&&getans(i,j,q[head])>getans(i,j,q[head+1])) head++;
                dp[i][j]=getans(i,j,q[head]);
                while(tail>head&&(Y(i,j)-Y(q[tail],j))*(q[tail]-q[tail-1])<(Y(q[tail],j)-Y(q[tail-1],j))*(i-q[tail])) tail--;
                q[++tail]=i; //队首可以getans维护,队尾不行,必须维护斜率! 
            }
        }
        printf("%I64d
    ",dp[M][P]);
        return 0;
    } 
    View Code
  • 相关阅读:
    MongoDB数据库遭大规模勒索攻击,被劫持26000多台服务器 #精选GITHUBMYSQL
    前端追着设计砍系列的9个超酷网页特效
    15款不容错过的前端开发Javascript和css类库
    恶性循环中的永生bug,可以说是相当写实了
    你是码农还是专家?看看你是哪一类程序员
    夏天过去了, 姥爷推荐几套来自smashingmagzine的超棒秋天主题壁纸
    五毛党可能要失业了,因为AI水军来了
    现代软件工程 第五章 【团队和流程】练习与讨论
    现代软件工程 第四章 【结对编程】练习与讨论
    现代软件工程 课件 软件工程师能力自我评价表
  • 原文地址:https://www.cnblogs.com/hua-dong/p/9246212.html
Copyright © 2011-2022 走看看