zoukankan      html  css  js  c++  java
  • HDU

    Alice is interesting in computation geometry problem recently. She found a interesting problem and solved it easily. Now she will give this problem to you : 

    You are given NN distinct points (Xi,Yi)(Xi,Yi) on the two-dimensional plane. Your task is to find a point PP and a real number RR, such that for at least N2⌈N2⌉ given points, their distance to point PP is equal to RR. 

    InputThe first line is the number of test cases. 

    For each test case, the first line contains one positive number N(1N105)N(1≤N≤105). 

    The following NN lines describe the points. Each line contains two real numbers XiXiand YiYi (0|Xi|,|Yi|103)(0≤|Xi|,|Yi|≤103) indicating one give point. It's guaranteed that NN points are distinct. 
    OutputFor each test case, output a single line with three real numbers XP,YP,RXP,YP,R, where (XP,YP)(XP,YP) is the coordinate of required point PP. Three real numbers you output should satisfy 0|XP|,|YP|,R1090≤|XP|,|YP|,R≤109. 

    It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as RR if it is within an absolute error of 10310−3 of RR. 
    Sample Input

    1
    7
    1 1
    1 0
    1 -1
    0 1
    -1 1
    0 -1
    -1 0

    Sample Output

    0 0 1

    题意:给定N个点,求一个圆,使得圆上的点大于大于一半,保证有解。

    思路:既然保证有解,我们就随机得到三角形,然后求外接圆取验证即可。

    #include<bits/stdc++.h>
    #define rep(i,a,b) for(int i=a;i<=b;i++)
    using namespace std;
    typedef long long ll;
    const double eps=1e-3;
    const double pi=acos(-1.0);
    struct point{
        double x,y;
        point(double a=0,double b=0):x(a),y(b){}
    };
    int dcmp(double x){ return fabs(x)<eps?0:(x<0?-1:1);}
    point operator +(point A,point B) { return point(A.x+B.x,A.y+B.y);}
    point operator -(point A,point B) { return point(A.x-B.x,A.y-B.y);}
    point operator *(point A,double p){ return point(A.x*p,A.y*p);}
    point operator /(point A,double p){ return point(A.x/p,A.y/p);}
    point rotate(point A,double rad){
        return point(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
    }
    bool operator ==(const point& a,const point& b) {
         return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
    }
    double dot(point A,point B){ return A.x*B.x+A.y*B.y;}
    double det(point A,point B){ return A.x*B.y-A.y*B.x;}
    double dot(point O,point A,point B){ return dot(A-O,B-O);}
    double det(point O,point A,point B){ return det(A-O,B-O);}
    double length(point A){ return sqrt(dot(A,A));}
    double angle(point A,point B){ return acos(dot(A,B)/length(A)/length(B));}
    point jiaopoint(point p,point v,point q,point w)
    {   //p+tv q+tw,点加向量表示直线,求直线交点
        point u=p-q;
        double t=det(w,u)/det(v,w);
        return p+v*t;
    }
    point GetCirPoint(point a,point b,point c)
    {
        point p=(a+b)/2;    //ab中点
        point q=(a+c)/2;    //ac中点
        point v=rotate(b-a,pi/2.0),w=rotate(c-a,pi/2.0);   //中垂线的方向向量
        if (dcmp(length(det(v,w)))==0)    //平行
        {
            if(dcmp(length(a-b)+length(b-c)-length(a-c))==0) return (a+c)/2;
            if(dcmp(length(b-a)+length(a-c)-length(b-c))==0) return (b+c)/2;
            if(dcmp(length(a-c)+length(c-b)-length(a-b))==0) return (a+b)/2;
        }
        return jiaopoint(p,v,q,w);
    }
    const int maxn=100010;
    point a[maxn]; int F[maxn];
    bool check(point S,double R,int N){
        int num=0;
        rep(i,1,N){
            if(dcmp(length(a[i]-S)-R)==0) num++;
        }
        if(num>=(N+1)/2) return true; return false;
    }
    int main()
    {
        int T,N,M;
        scanf("%d",&T);
        while(T--){
            scanf("%d",&N);
            rep(i,1,N) scanf("%lf%lf",&a[i].x,&a[i].y);
            if(N==1) printf("%.6lf %.6lf %.6lf
    ",a[1].x,a[1].y,0.0);
            else if(N==2) printf("%.6lf %.6lf %.6lf
    ",(a[1].x+a[2].x)/2,(a[1].y+a[2].y)/2,length(a[1]-a[2])/2);
            else {
                while(true){
                    rep(i,1,N) F[i]=i;
                    random_shuffle(F+1,F+N+1);
                    point S=GetCirPoint(a[F[1]],a[F[2]],a[F[3]]);
                    double R=length(S-a[F[1]]);
                    if(check(S,R,N)) {
                        printf("%.6lf %.6lf %.6lf
    ",S.x,S.y,R);
                        break;
                    }
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    php 获取文件的md5
    php 获取远程文件大小
    chrome 浏览器,大屏显示
    Mac 中Java项目打包上线
    如何在苹果M1芯片 (Apple Silicon) 上安装 JDK 环境
    Mysql 替换数据中的部分内容,比如迁移服务器,需要修改图片地址
    docker安装指定版本minio
    docker 查询镜像并删除
    docker 容器名称已存在
    docker 安装minio
  • 原文地址:https://www.cnblogs.com/hua-dong/p/9696852.html
Copyright © 2011-2022 走看看