zoukankan      html  css  js  c++  java
  • Python 对不均衡数据进行Over sample(重抽样)

    需要重采样的数据文件(Libsvm format),如heart_scale

    +1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.419847 9:-1 10:-0.225806 12:1 13:-1 
    -1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1 7:1 8:0.358779 9:-1 10:-0.483871 12:-1 13:1 
    ....
    

     重采样后的数据保存文件(Libsvm format),这里heart_scale_balance.txt

    Python code:

    from sklearn.datasets import load_svmlight_file
    from sklearn.datasets import dump_svmlight_file
    import numpy as np
    from sklearn.utils import check_random_state
    from scipy.sparse import hstack,vstack
    
    def fit_sample(X, y):
        """Resample the dataset.
        """
        label = np.unique(y)
        stats_c_ = {}
        maj_n = 0
        for i in label:
        	nk = sum(y==i)
        	stats_c_[i] = nk
        	if nk > maj_n:
        		maj_n = nk	
         		maj_c_ = i
    
    
        # Keep the samples from the majority class
        X_resampled = X[y == maj_c_]
        y_resampled = y[y == maj_c_]
        # Loop over the other classes over picking at random
        for key in stats_c_.keys():
    
            # If this is the majority class, skip it
            if key == maj_c_:
                continue
    
            # Define the number of sample to create
            num_samples = int(stats_c_[maj_c_] -stats_c_[key])
    
            # Pick some elements at random
            random_state = check_random_state(42)
            indx = random_state.randint(low=0, high=stats_c_[key],size=num_samples)
    
            # Concatenate to the majority class
            X_resampled = vstack([X_resampled,X[y == key],X[y == key][indx]])
            print np.shape(y_resampled),np.shape(y[y == key]),np.shape(y[y == key][indx])
            y_resampled = list(y_resampled)+list(y[y == key])+list(y[y == key][indx])
        return X_resampled, y_resampled
    
    
    X_train, y_train = load_svmlight_file("heart_scale")
    
    # Apply the random over-sampling
    X_train, y_train = fit_sample(X_train,y_train)
    dump_svmlight_file(X_train, y_train,'heart_scale_balance.txt',zero_based=False)
    
  • 相关阅读:
    C++中break语句、continue语句和goto语句区别
    面试题 01.03:URL化(C++)
    面试题 01.02: 判定是否互为字符重排(C++)
    面试题 01.01: 判定字符是否唯一(C++)
    探索one
    面试题32
    面试题32
    面试题32
    面试题33: 二叉搜索树的后序遍历序列(C++)
    用命令行执行php脚本输出乱码
  • 原文地址:https://www.cnblogs.com/huadongw/p/6158573.html
Copyright © 2011-2022 走看看