zoukankan      html  css  js  c++  java
  • HashMap,Hashtable,ConcurrentHashMap 和 synchronized Map 的原理和区别

    HashMap 是否是线程安全的,如何在线程安全的前提下使用 HashMap,其实也就是HashMapHashtableConcurrentHashMap 和 synchronized Map 的原理和区别。当时有些紧张只是简单说了下HashMap不是线程安全的;Hashtable 线程安全,但效率低,因为是 Hashtable 是使用 synchronized 的,所有线程竞争同一把锁;而 ConcurrentHashMap 不仅线程安全而且效率高,因为它包含一个 segment 数组,将数据分段存储,给每一段数据配一把锁,也就是所谓的锁分段技术。当时忘记了 synchronized Map 和解释一下 HashMap 为什么线程不安全。面试结束后问了下面试官哪里有些不足,面试官说上面这个问题的回答算过关,但可以在深入一些或者自己动手尝试一下。so~~~虽然拿到了 offer,但还是再整理一下,不能得过且过啊。

    为什么HashMap是线程不安全的

    总说 HashMap 是线程不安全的,不安全的,不安全的,那么到底为什么它是线程不安全的呢?要回答这个问题就要先来简单了解一下 HashMap 源码中的使用的存储结构(这里引用的是 Java 8 的源码,与7是不一样的)和它的扩容机制

    HashMap的内部存储结构

    下面是 HashMap 使用的存储结构:

    1
    2
    3
    4
    5
    6
    7
    8
    
    transient Node<K,V>[] table;
    
    static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
    }
    

    可以看到 HashMap 内部存储使用了一个 Node 数组(默认大小是16),而 Node 类包含一个类型为 Node 的 next 的变量,也就是相当于一个链表,所有根据 hash 值计算的 bucket 一样的 key 会存储到同一个链表里(即产生了冲突),大概就是下面图的样子(顺便推荐个在线画图的网站Creately)。
    HashMap内部存储结果HashMap内部存储结果

    需要注意的是,在 Java 8 中如果 hash 值相同的 key 数量大于指定值(默认是8)时使用平衡树来代替链表,这会将get()方法的性能从O(n)提高到O(logn)。具体的可以看我的另一篇博客Java 8中HashMap和LinkedHashMap如何解决冲突

    HashMap的自动扩容机制

    HashMap 内部的 Node 数组默认的大小是16,假设有100万个元素,那么最好的情况下每个 hash 桶里都有62500个元素

    ,这时get(),put(),remove()等方法效率都会降低。为了解决这个问题,HashMap 提供了自动扩容机制,当元素个数达到数组大小 loadFactor 后会扩大数组的大小,在默认情况下,数组大小为16,loadFactor 为0.75,也就是说当 HashMap 中的元素超过16.75=12时,会把数组大小扩展为2*16=32,并且重新计算每个元素在新数组中的位置。如下图所示(图片来源,权侵删)。
    自动扩容自动扩容
    从图中可以看到没扩容前,获取 EntryE 需要遍历5个元素,扩容之后只需要2次。

    为什么线程不安全

    个人觉得 HashMap 在并发时可能出现的问题主要是两方面,首先如果多个线程同时使用put方法添加元素,而且假设正好存在两个 put 的 key 发生了碰撞(根据 hash 值计算的 bucket 一样),那么根据 HashMap 的实现,这两个 key 会添加到数组的同一个位置,这样最终就会发生其中一个线程的 put 的数据被覆盖。第二就是如果多个线程同时检测到元素个数超过数组大小* loadFactor ,这样就会发生多个线程同时对 Node 数组进行扩容,都在重新计算元素位置以及复制数据,但是最终只有一个线程扩容后的数组会赋给 table,也就是说其他线程的都会丢失,并且各自线程 put 的数据也丢失。
    关于 HashMap 线程不安全这一点,《Java并发编程的艺术》一书中是这样说的:

    HashMap 在并发执行 put 操作时会引起死循环,导致 CPU 利用率接近100%。因为多线程会导致 HashMap 的 Node 链表形成环形数据结构,一旦形成环形数据结构,Node 的 next 节点永远不为空,就会在获取 Node 时产生死循环。

    哇塞,听上去si不si好神奇,居然会产生死循环。。。。 google 了一下,才知道死循环并不是发生在 put 操作时,而是发生在扩容时。详细的解释可以看下面几篇博客:

    如何线程安全的使用HashMap

    了解了 HashMap 为什么线程不安全,那现在看看如何线程安全的使用 HashMap。这个无非就是以下三种方式:

    • Hashtable
    • ConcurrentHashMap
    • Synchronized Map

    例子:

    1
    2
    3
    4
    5
    6
    7
    8
    
    //Hashtable
    Map<String, String> hashtable = new Hashtable<>();
    
    //synchronizedMap
    Map<String, String> synchronizedHashMap = Collections.synchronizedMap(new HashMap<String, String>());
    
    //ConcurrentHashMap
    Map<String, String> concurrentHashMap = new ConcurrentHashMap<>();
    

    依次来看看。

    Hashtable

    先稍微吐槽一下,为啥命名不是 HashTable 啊,看着好难受

    ,不管了就装作它叫HashTable 吧。这货已经不常用了,就简单说说吧。HashTable 源码中是使用 synchronized 来保证线程安全的,比如下面的 get 方法和 put 方法:

    1
    2
    3
    4
    5
    6
    
    public synchronized V get(Object key) {
           // 省略实现
        }
    public synchronized V put(K key, V value) {
    	// 省略实现
        }
    

    所以当一个线程访问 HashTable 的同步方法时,其他线程如果也要访问同步方法,会被阻塞住。举个例子,当一个线程使用 put 方法时,另一个线程不但不可以使用 put 方法,连 get 方法都不可以,好霸道啊!!!so~~,效率很低,现在基本不会选择它了。

    ConcurrentHashMap

    ConcurrentHashMap (以下简称CHM)是 JUC 包中的一个类,spring 的源码中有很多使用 CHM 的地方。之前已经翻译过一篇关于 ConcurrentHashMap 的博客,如何在java中使用ConcurrentHashMap,里面介绍了 CHM 在 Java 中的实现,CHM 的一些重要特性和什么情况下应该使用 CHM。需要注意的是,上面博客是基于 Java 7 的,和8有区别,在8中 CHM 摒弃了 Segment(锁段)的概念,而是启用了一种全新的方式实现,利用 CAS 算法,有时间会重新总结一下。

    SynchronizedMap

    看了一下源码,SynchronizedMap 的实现还是很简单的。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    
    // synchronizedMap方法
    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
           return new SynchronizedMap<>(m);
       }
    // SynchronizedMap类
    private static class SynchronizedMap<K,V>
           implements Map<K,V>, Serializable {
           private static final long serialVersionUID = 1978198479659022715L;
    
           private final Map<K,V> m;     // Backing Map
           final Object      mutex;        // Object on which to synchronize
    
           SynchronizedMap(Map<K,V> m) {
               this.m = Objects.requireNonNull(m);
               mutex = this;
           }
    
           SynchronizedMap(Map<K,V> m, Object mutex) {
               this.m = m;
               this.mutex = mutex;
           }
    
           public int size() {
               synchronized (mutex) {return m.size();}
           }
           public boolean isEmpty() {
               synchronized (mutex) {return m.isEmpty();}
           }
           public boolean containsKey(Object key) {
               synchronized (mutex) {return m.containsKey(key);}
           }
           public boolean containsValue(Object value) {
               synchronized (mutex) {return m.containsValue(value);}
           }
           public V get(Object key) {
               synchronized (mutex) {return m.get(key);}
           }
    
           public V put(K key, V value) {
               synchronized (mutex) {return m.put(key, value);}
           }
           public V remove(Object key) {
               synchronized (mutex) {return m.remove(key);}
           }
           // 省略其他方法
       }
    

    从源码中可以看出调用 synchronizedMap() 方法后会返回一个 SynchronizedMap 类的对象,而在 SynchronizedMap 类中使用了 synchronized 同步关键字来保证对 Map 的操作是线程安全的。

    性能对比

    这是要靠数据说话的时代,所以不能只靠嘴说 CHM 快,它就快了。写个测试用例,实际的比较一下这三种方式的效率(源码来源),下面的代码分别通过三种方式创建 Map 对象,使用 ExecutorService 来并发运行5个线程,每个线程添加/获取500K个元素。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    
    public class CrunchifyConcurrentHashMapVsSynchronizedMap {
    
        public final static int THREAD_POOL_SIZE = 5;
    
        public static Map<String, Integer> crunchifyHashTableObject = null;
        public static Map<String, Integer> crunchifySynchronizedMapObject = null;
        public static Map<String, Integer> crunchifyConcurrentHashMapObject = null;
    
        public static void main(String[] args) throws InterruptedException {
    
            // Test with Hashtable Object
            crunchifyHashTableObject = new Hashtable<>();
            crunchifyPerformTest(crunchifyHashTableObject);
    
            // Test with synchronizedMap Object
            crunchifySynchronizedMapObject = Collections.synchronizedMap(new HashMap<String, Integer>());
            crunchifyPerformTest(crunchifySynchronizedMapObject);
    
            // Test with ConcurrentHashMap Object
            crunchifyConcurrentHashMapObject = new ConcurrentHashMap<>();
            crunchifyPerformTest(crunchifyConcurrentHashMapObject);
    
        }
    
        public static void crunchifyPerformTest(final Map<String, Integer> crunchifyThreads) throws InterruptedException {
    
            System.out.println("Test started for: " + crunchifyThreads.getClass());
            long averageTime = 0;
            for (int i = 0; i < 5; i++) {
    
                long startTime = System.nanoTime();
                ExecutorService crunchifyExServer = Executors.newFixedThreadPool(THREAD_POOL_SIZE);
    
                for (int j = 0; j < THREAD_POOL_SIZE; j++) {
                    crunchifyExServer.execute(new Runnable() {
                        @SuppressWarnings("unused")
                        @Override
                        public void run() {
    
                            for (int i = 0; i < 500000; i++) {
                                Integer crunchifyRandomNumber = (int) Math.ceil(Math.random() * 550000);
    
                                // Retrieve value. We are not using it anywhere
                                Integer crunchifyValue = crunchifyThreads.get(String.valueOf(crunchifyRandomNumber));
    
                                // Put value
                                crunchifyThreads.put(String.valueOf(crunchifyRandomNumber), crunchifyRandomNumber);
                            }
                        }
                    });
                }
    
                // Make sure executor stops
                crunchifyExServer.shutdown();
    
                // Blocks until all tasks have completed execution after a shutdown request
                crunchifyExServer.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
    
                long entTime = System.nanoTime();
                long totalTime = (entTime - startTime) / 1000000L;
                averageTime += totalTime;
                System.out.println("2500K entried added/retrieved in " + totalTime + " ms");
            }
            System.out.println("For " + crunchifyThreads.getClass() + " the average time is " + averageTime / 5 + " ms
    ");
        }
    }
    

    测试结果:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    
    Test started for: class java.util.Hashtable
    2500K entried added/retrieved in 2018 ms
    2500K entried added/retrieved in 1746 ms
    2500K entried added/retrieved in 1806 ms
    2500K entried added/retrieved in 1801 ms
    2500K entried added/retrieved in 1804 ms
    For class java.util.Hashtable the average time is 1835 ms
    
    Test started for: class java.util.Collections$SynchronizedMap
    2500K entried added/retrieved in 3041 ms
    2500K entried added/retrieved in 1690 ms
    2500K entried added/retrieved in 1740 ms
    2500K entried added/retrieved in 1649 ms
    2500K entried added/retrieved in 1696 ms
    For class java.util.Collections$SynchronizedMap the average time is 1963 ms
    
    Test started for: class java.util.concurrent.ConcurrentHashMap
    2500K entried added/retrieved in 738 ms
    2500K entried added/retrieved in 696 ms
    2500K entried added/retrieved in 548 ms
    2500K entried added/retrieved in 1447 ms
    2500K entried added/retrieved in 531 ms
    For class java.util.concurrent.ConcurrentHashMap the average time is 792 ms
    

    这个就不用废话了,CHM 性能是明显优于 Hashtable 和 SynchronizedMap 的,CHM 花费的时间比前两个的一半还少,哈哈,以后再有人问就可以甩数据了。

  • 相关阅读:
    2级搭建类203-Oracle 19c SI ASM 静默搭建(OEL7.7)
    2级搭建类EM-Oracle EMCC 13c Release 3 在 OEL 7.7 上的搭建
    1级搭建类112-Oracle 19c SI FS(CentOS 8)
    0级搭建类013-CentOS 8.x 安装
    List添加map,后添加的map覆盖前面的问题
    mysql插入数据报错1366
    oracle ora-12514解决办法
    easyUI 创建详情页dialog
    Server Tomcat v7.0 Server at localhost failed to start.
    maven项目启动报错;class path resource [com/ssm/mapping/] cannot be resolved to URL because it does not exist
  • 原文地址:https://www.cnblogs.com/huajiezh/p/6411695.html
Copyright © 2011-2022 走看看