zoukankan      html  css  js  c++  java
  • Live Archive 3882 And Then There Was One

      【原题链接

      约瑟夫环,普通链表法O(nk)复杂度无法承受,但是可以有O(n)的算法。

      以下摘自百度百科

      无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

      为了讨论方便,先把问题稍微改变一下,并不影响原意:

      问题描述:n个人(编号0~(n-1)),从0开始报数,报到m-1的退出,剩下的人继续从0开始报数。求胜利者的编号。

      我们知道第一个人(编号一定是(m-1)%n) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):

      k k+1 k+2 ... n-2,n-1,0,1,2,... k-2

      并且从k开始报0。

      现在我们把他们的编号做一下转换:

      k --> 0

      k+1 --> 1

      k+2 --> 2

      ...

      ...

      k-3 --> n-3

      k-2 --> n-2

      序列1:0,1,2,3 … n-2,n-1

      序列2:0,1,2,3 … k-2,k,…,n-2,n-1

      序列3:k,k+1,k+2,k+3,…,n-2,n-1,1,2,3,…,k-2

      序列4:0,1,2,3 …,5,6,7,8,…,n-3,n-2

      变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:

      ∵ k=m%n;

      ∴ x' = x+k = x+ m%n ; 而 x+ m%n 可能大于n

      ∴x'= (x+ m%n)%n = (x+m)%n

      得到 x‘=(x+m)%n

      如何知道(n-1)个人报数的问题的解? 对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

      令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n].

      递推公式:

      f[1]=0;

      f[i]=(f[i-1]+m)%i; (i>1)

       

      也就是说,假设最后为第n层,只剩下编号0(人数为1),然后向上推一层,那么(f[i-1] + m) % i就是第n层0编号在第n-1层的位置,再向上推到第一层恢复为原来序列,那么此时推到的位置就是最后的赢家的真实位置了。

      ps:《训练指南》里的代码好像过不了这题。

    View Code
     1 #include <stdio.h>
     2 #include <iostream>
     3 using namespace std;
     4 int main()
     5 {
     6     int n, k, m;
     7     while(cin >> n >> k >> m)
     8     {
     9         if( n==0 && k==0 && m==0 ) break;
    10         int cur = 0;
    11         for(int i = 2; i < n; ++ i)
    12             cur = (cur + k) % i;
    13         cout << (cur + m) % n + 1 << endl;
    14     }
    15     return 0;
    16 }
  • 相关阅读:
    2019沈阳网路赛 D. Fish eating fruit (点分治)
    2019南京网路赛 A.The beautiful values of the palace (主席树)
    洛谷 P2634 [国家集训队]聪聪可可(点分治)
    AcWing252 树 (点分治模板题)
    点分治模板 (洛谷 P3806)
    2020牛客寒假算法基础集训营2 J-求函数(线段树维护矩阵乘法)
    七夕祭(贪心+中位数)
    数据结构-集合
    数据结构-广义表
    数据结构-稀疏矩阵
  • 原文地址:https://www.cnblogs.com/huangfeihome/p/2766327.html
Copyright © 2011-2022 走看看