Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test
case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1
<= n <= 100,000,000). Three zeros signal the end of input and this test
case is not to be processed.
Output
For each test case, print the value of f(n) on a single
line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
不可以用递归公式求 会溢出 因为n比较大 (尽管我也是看见别人的博客才知道的)
对于公式 f[n] = A * f[n-1] + B * f[n-2]; 后者只有7 * 7 = 49 种可能,为什么这么说,因为对于f[n-1] 或者 f[n-2] 的取值只有 0,1,2,3,4,5,6 这7个数,A,B又是固定的,所以就只有49种可能值了。由该关系式得知每一项只与前两项发生关系,所以当连续的两项在前面出现过循环节出现了,注意循环节并不一定会是开始的 1,1 。 又因为一组测试数据中f[n]只有49中可能的答案,最坏的情况是所有的情况都遇到了,那么那也会在50次运算中产生循环节。找到循环节后,就可以轻松解决了。(贴过来的)
代码如下 (但是我提交了N次,只要i《=10000,就出现运行错误)...... 求指点
#include <stdio.h> #include <math.h> int f[10000]; int main() { int a,b,n,i; f[1]=1; f[2]=1; while(scanf("%d%d%d",&a,&b,&n),a|b|n) { for(i=3; i<10000; i++) { f[i]=(a*f[i-1]+b*f[i-2])%7; if(f[i]==1&&f[i-1]==1) { break; } } n=n%(i-2); f[0]=f[i-2]; printf("%d ",f[n]); } return 0; }