zoukankan      html  css  js  c++  java
  • 项目实战从 0 到 1 学习之Flink(14)Flink 读取kafka数据,写入到Hbase

    概述

    环境说明

    scala: 2.12.8 linux下scala安装部署
    flink : 1.8.1 Flink1.8.1 集群部署
    kafka_2.12-2.2.0 kafka_2.12-2.2.0 集群部署
    hbase 2.1 hbase 2.1 环境搭建–完全分布式模式 Advanced - Fully Distributed
    hadoop Hadoop 2.8.5 完全分布式HA高可用安装(二)–环境搭建

    引入依赖

    <dependency>
        <groupId>org.apache.hbase</groupId>
        <artifactId>hbase-client</artifactId>
        <version>2.1.5</version>
    </dependency>     
    <dependency>
        <groupId>org.apache.phoenix</groupId>
        <artifactId>phoenix-core</artifactId>
        <version>5.0.0-HBase-2.0</version>
    </dependency>
    
    
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-java</artifactId>
        <version>1.8.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java_2.11</artifactId>
        <version>1.8.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-clients_2.11</artifactId>
        <version>1.8.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-kafka_2.11</artifactId>
        <version>1.8.1</version>
    </dependency>

    使用flink读取kafka的数据消息

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(1000);
    
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "node1:9092");
    
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("my-test-topic", new SimpleStringSchema(), properties);
        //从最早开始消费
        consumer.setStartFromEarliest();
        DataStream<String> stream = env.addSource(consumer);
        stream.print();
        //stream.map();
        env.execute();
    }

    启动服务:

    1. 启动hadoop集群
    2. 启动hbase集群
    3. 启动kafka集群
    4. 启动flink

    执行上述main方法,该main方法会一直监控kafka集群消息。

    我们启动kafka客户端来发送几条消息

    ./kafka-console-producer.sh --broker-list node1:9092 --topic my-test-topic
    >111111
    >2222

    可以看到java程序控制台输出

    4> 111111
    4> 2222

    写入hbase

    编写process来完成写入hbase的操作

    import lombok.extern.slf4j.Slf4j;
    import org.apache.flink.streaming.api.functions.ProcessFunction;
    import org.apache.flink.util.Collector;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.hbase.HBaseConfiguration;
    import org.apache.hadoop.hbase.TableName;
    import org.apache.hadoop.hbase.client.Connection;
    import org.apache.hadoop.hbase.client.ConnectionFactory;
    import org.apache.hadoop.hbase.client.Put;
    import org.apache.hadoop.hbase.client.Table;
    import org.apache.hadoop.hbase.util.Bytes;
    
    @Slf4j
    public class HbaseProcess extends ProcessFunction<String, String> {
        private static final long serialVersionUID = 1L;
    
        private Connection connection = null;
        private Table table = null;
    
        @Override
        public void open(org.apache.flink.configuration.Configuration parameters) throws Exception {
            try {
                // 加载HBase的配置
                Configuration configuration = HBaseConfiguration.create();
    
                // 读取配置文件
                configuration.addResource(new Path(ClassLoader.getSystemResource("hbase-site.xml").toURI()));
                configuration.addResource(new Path(ClassLoader.getSystemResource("core-site.xml").toURI()));
                connection = ConnectionFactory.createConnection(configuration);
    
                TableName tableName = TableName.valueOf("test");
    
                // 获取表对象
                table = connection.getTable(tableName);
    
                log.info("[HbaseSink] : open HbaseSink finished");
            } catch (Exception e) {
                log.error("[HbaseSink] : open HbaseSink faild {}", e);
            }
        }
    
        @Override
        public void close() throws Exception {
            log.info("close...");
            if (null != table) table.close();
            if (null != connection) connection.close();
        }
    
        @Override
        public void processElement(String value, Context ctx, Collector<String> out) throws Exception {
            try {
                log.info("[HbaseSink] value={}", value);
    
                //row1:cf:a:aaa
                String[] split = value.split(":");
    
                // 创建一个put请求,用于添加数据或者更新数据
                Put put = new Put(Bytes.toBytes(split[0]));
                put.addColumn(Bytes.toBytes(split[1]), Bytes.toBytes(split[2]), Bytes.toBytes(split[3]));
                table.put(put);
                log.error("[HbaseSink] : put value:{} to hbase", value);
            } catch (Exception e) {
                log.error("", e);
            }
        }
    }

    然后将上面main方法中的stream.print();改为:

    stream.process(new HbaseProcess());

    运行main方法,然后在kafka控制台发送一条消息row1:cf:a:aaa
    到hbase 的shell控制台查看test表数据:

    hbase(main):012:0> scan 'test'
    ROW                                              COLUMN+CELL                                                                                                                                   
     row1                                            column=cf:a, timestamp=1563880584014, value=aaa                                                                                               
     row1                                            column=cf:age, timestamp=1563779499842, value=12                                                                                              
     row2                                            column=cf:a, timestamp=1563451278532, value=value2a                                                                                           
     row2                                            column=cf:age, timestamp=1563779513308, value=13                                                                                              
     row2                                            column=cf:b, timestamp=1563441738877, value=value2                                                                                            
     row3                                            column=cf:c, timestamp=1563441741609, value=value3

    上面第一行aaa就是我们新插入的数据。

    当然除了process,也可以使用sink,编写HbaseSink类

    import lombok.extern.slf4j.Slf4j;
    import org.apache.flink.streaming.api.functions.sink.SinkFunction;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.hbase.HBaseConfiguration;
    import org.apache.hadoop.hbase.TableName;
    import org.apache.hadoop.hbase.client.Connection;
    import org.apache.hadoop.hbase.client.ConnectionFactory;
    import org.apache.hadoop.hbase.client.Put;
    import org.apache.hadoop.hbase.client.Table;
    import org.apache.hadoop.hbase.util.Bytes;
    
    @Slf4j
    public class HbaseSink implements SinkFunction<String> {
        @Override
        public void invoke(String value, Context context) throws Exception {
            Connection connection = null;
            Table table = null;
            try {
                // 加载HBase的配置
                Configuration configuration = HBaseConfiguration.create();
    
                // 读取配置文件
                configuration.addResource(new Path(ClassLoader.getSystemResource("hbase-site.xml").toURI()));
                configuration.addResource(new Path(ClassLoader.getSystemResource("core-site.xml").toURI()));
                connection = ConnectionFactory.createConnection(configuration);
    
                TableName tableName = TableName.valueOf("test");
    
                // 获取表对象
                table = connection.getTable(tableName);
    
                //row1:cf:a:aaa
                String[] split = value.split(":");
    
                // 创建一个put请求,用于添加数据或者更新数据
                Put put = new Put(Bytes.toBytes(split[0]));
                put.addColumn(Bytes.toBytes(split[1]), Bytes.toBytes(split[2]), Bytes.toBytes(split[3]));
                table.put(put);
                log.error("[HbaseSink] : put value:{} to hbase", value);
            } catch (Exception e) {
                log.error("", e);
            } finally {
                if (null != table) table.close();
                if (null != connection) connection.close();
            }
        }
    }

    然后修改main方法代码,运行效果一样的。具体区别后续再分析。

    //        stream.print();
    //        stream.process(new HbaseProcess());
            stream.addSink(new HbaseSink());
    作者:大码王

    -------------------------------------------

    个性签名:独学而无友,则孤陋而寡闻。做一个灵魂有趣的人!

    如果觉得这篇文章对你有小小的帮助的话,记得在右下角点个“推荐”哦,博主在此感谢!

    万水千山总是情,打赏一分行不行,所以如果你心情还比较高兴,也是可以扫码打赏博主,哈哈哈(っ•?ω•?)っ???!

  • 相关阅读:
    python-阿里镜像源-pip
    python-Web-django-图形验证
    markdown-博客编辑
    python-爬虫-史书典籍
    python-爬虫-requests
    python-Web-项目-svn和git
    python-Web-数据库-Redis
    Codeforces Round #617 (Div. 3) A~D
    Educational Codeforces Round 81 (Rated for Div. 2)
    Codeforces Round #609 (Div. 2) A到C题
  • 原文地址:https://www.cnblogs.com/huanghanyu/p/13628340.html
Copyright © 2011-2022 走看看