zoukankan      html  css  js  c++  java
  • 卷积神经网络CNN——MATLAB deep learning工具箱学习笔记

    这是MATLAB深度学习工具箱中CNN代码的学习笔记。

    工具箱可以从github上下载:https://github.com/rasmusbergpalm/DeepLearnToolbox

    建议参考CNN代码分析笔记:https://blog.csdn.net/u013007900/article/details/51428186

    讲解误差反向传播的笔记:https://blog.csdn.net/viatorsun/article/details/82696475

    MATLAB卷积运算笔记:https://blog.csdn.net/baoxiao7872/article/details/80435214

    推荐阅读:《深度学习》

    在CNN的示例中,使用自带的数据(手写数字的图片)进行CNN的训练和测试。

    全部代码名称如下图所示。

      

    其中test_example_CNN为测试示例,mnist_uint8为数据,该部分代码及注释如下:

    function test_example_CNN
    load mnist_uint8;   %手写数字样本,每个样本特征为28*28的向量
    
    train_x = double(reshape(train_x',28,28,60000))/255;   %训练数据,重塑数组为28*28,60000份,并归一化
    test_x = double(reshape(test_x',28,28,10000))/255;    %测试数据,10000份
    train_y = double(train_y');
    test_y = double(test_y');
    
    %% ex1 Train a 6c-2s-12c-2s Convolutional neural network 
    %will run 1 epoch in about 200 second and get around 11% error. 
    %With 100 epochs you'll get around 1.2% error
    
    rand('state',0)    %每次产生的随机数都相同
    
    cnn.layers = {
        struct('type', 'i') %input layer  输入层
        struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer 卷积层
        % outputmaps:卷积输出特征图像个数 6
        % kernelsize:卷积核尺寸 5
        struct('type', 's', 'scale', 2) %sub sampling layer  降采样层,功能类似于pooling
        % 降采样尺寸 2
        struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer  卷积层
        % outputmaps:卷积输出特征图像个数 12
        % kernelsize:卷积核尺寸 5
        struct('type', 's', 'scale', 2) %subsampling layer  降采样层
        %降采样尺寸 2
    };
    % 此处定义神经网络一共有5层:输入层-卷积层-降采样层-卷积层-降采样层
    
    opts.alpha = 1;   %学习效率
    opts.batchsize = 50;   %批训练样本数量
    opts.numepochs = 1;  %迭代次数
    
    cnn = cnnsetup(cnn, train_x, train_y);   %CNN初始化
    cnn = cnntrain(cnn, train_x, train_y, opts); %训练CNN
    
    [er, bad] = cnntest(cnn, test_x, test_y);  %测试CNN
    
    %plot mean squared error
    figure; plot(cnn.rL);    %画出MSE,均方误差
    assert(er<0.12, 'Too big error');

    根据代码运行顺序,接下来运行cnnsetup,对CNN中的参数进行初始化,主要设置卷积核初始值和偏置初始值。代码及注释如下:

    %% 初始化CNN参数
    % 卷积核,偏置,尾部单层感知机
    
    function net = cnnsetup(net, x, y)
        assert(~isOctave() || compare_versions(OCTAVE_VERSION, '3.8.0', '>='), ['Octave 3.8.0 or greater is required for CNNs as there is a bug in convolution in previous versions. See http://savannah.gnu.org/bugs/?39314. Your version is ' myOctaveVersion]);
        inputmaps = 1;   % 每次输入map个数
        mapsize = size(squeeze(x(:, :, 1)));   
        % 将3维数据压缩成2维数据并计算矩阵尺寸
        % mapsize = [28, 28]
        for l = 1 : numel(net.layers)   % 对各层神经网络的参数进行初始化设置
            if strcmp(net.layers{l}.type, 's')    %subsampling layer 若为降采样层
                mapsize = mapsize / net.layers{l}.scale;
                % 若l=3,mapsize = [24, 24]/2 = [12, 12]
                % 若l=5,mapsize = [8, 8]/2 = [4, 4]
                assert(all(floor(mapsize)==mapsize), ['Layer ' num2str(l) ' size must be integer. Actual: ' num2str(mapsize)]);
                for j = 1 : inputmaps
                    net.layers{l}.b{j} = 0;  %一个降采样层的所有输入map,偏置b初始化为0
                end
            end
            if strcmp(net.layers{l}.type, 'c')   %卷积层
                mapsize = mapsize - net.layers{l}.kernelsize + 1;  
                % 卷积后map的尺寸(默认步长stride为1)
                % 计算方式:(原图尺寸 - 卷积核尺寸)/步长 + 1
                % 若l=2,mapsize = [28, 28] - 5 + 1 = [24, 24]
                % 若l=4,mapsize = [12, 12] - 5 + 1 = [8, 8]
                fan_out = net.layers{l}.outputmaps * net.layers{l}.kernelsize ^ 2;   
                % 此次卷积核神经元总数
                % 若l=2,fan_out = 6 * 5^2 = 150
                % 若l=4,fan_out = 12 * 5^2 = 300
                for j = 1 : net.layers{l}.outputmaps  %  output map
                    fan_in = inputmaps * net.layers{l}.kernelsize ^ 2;   
                    % 每个输出map对应卷积核神经元总数
                    % 若l=2,j=1, fan_in = 1 * 5^2 = 25;
                    % 若l=4,j=1,fan_in= 6 * 5^2 = 150
                    for i = 1 : inputmaps  %  input map
                        net.layers{l}.k{i}{j} = (rand(net.layers{l}.kernelsize) - 0.5) * 2 * sqrt(6 / (fan_in + fan_out));  
                        % 对每个卷积核值进行初始化
                        % k{i}{j} = (随机5*5矩阵 - 0.5)* 2 * sqrt(6/(fan_in + fan_out))
                        % 若l=2,该层共有1*6=6个卷积核
                        % 若l=4,该层共有6*12=72个卷积核,上层神经网络生成的每个特征图像对应6个卷积核
                    end
                    net.layers{l}.b{j} = 0;   
                    % 偏置为0
                    % 每个输出map只有一个bias,并非每个filter一个bias
                end
                inputmaps = net.layers{l}.outputmaps;   %更新下一层的输入特征图像个数
                % 若l=2,inputmaps = 6
                % 若l=4,inputmaps = 12
            end
        end
        % 'onum' is the number of labels, that's why it is calculated using size(y, 1). If you have 20 labels so the output of the network will be 20 neurons.
        % 'fvnum' is the number of output neurons at the last layer, the layer just before the output layer.
        % 'ffb' is the biases of the output neurons.
        % 'ffW' is the weights between the last layer and the output neurons. Note that the last layer is fully connected to the output layer, that's why the size of the weights is (onum * fvnum)
        fvnum = prod(mapsize) * inputmaps;   
        % 最后一层(输出层前一层)神经元数量
        % fvnum = 4 * 4 * 12 = 196
        onum = size(y, 1);    %标签总个数
        % onum = 10
        net.ffb = zeros(onum, 1);     %输出神经元偏置
        net.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));   %最后一层与输出神经元的连接权重
        % ffW = (随机10*196矩阵 - 0.5) * 2 * sqrt(6 / (10 + 196))
    end

    接下来运行cnntrain,利用分批数据训练神经网络,代码及注释如下:

    %% 训练CNN
    function net = cnntrain(net, x, y, opts)
        m = size(x, 3);    
        % 训练样本总个数
        % m = 60000
        numbatches = m / opts.batchsize;    
        % 能够分成的批次总数
        % numbatches = 60000/50
        if rem(numbatches, 1) ~= 0
            error('numbatches not integer');
        end
        net.rL = [];
        for i = 1 : opts.numepochs    %迭代次数
            disp(['epoch ' num2str(i) '/' num2str(opts.numepochs)]);
            tic;    %计时
            kk = randperm(m);     %生成1~m随机序号向量
            for l = 1 : numbatches
                batch_x = x(:, :, kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize));    %随机抽取一批样本
                batch_y = y(:,    kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize));
    
                net = cnnff(net, batch_x);     %前向过程
                net = cnnbp(net, batch_y);    %计算反向误差,计算梯度
                net = cnnapplygrads(net, opts);  %卷积核权重更新
                if isempty(net.rL)
                    net.rL(1) = net.L;
                end
                net.rL(end + 1) = 0.99 * net.rL(end) + 0.01 * net.L;
                % net.L为损失函数MSE
                % net.rL为损失函数的平滑序列
            end
            toc;
        end  
    end

    在cnntrain中,根据运行顺序,首先运行cnnff,进行前向过程,将数据输入神经网络,获得相应的输出。代码及注释如下:

    %% 前向过程
    function net = cnnff(net, x)
        n = numel(net.layers);   % 神经网络层数 n=5
        net.layers{1}.a{1} = x;   
        % 第一层神经网络(输入层)
        % a是输入map,为一个[28, 28, 50]的矩阵(具体情况具体定)
        inputmaps = 1;
    
        for l = 2 : n   %  for each layer
            if strcmp(net.layers{l}.type, 'c')   %卷积层
                %  !!below can probably be handled by insane matrix operations
                for j = 1 : net.layers{l}.outputmaps   %  for each output map
                    %  create temp output map
                    z = zeros(size(net.layers{l - 1}.a{1}) - [net.layers{l}.kernelsize - 1 net.layers{l}.kernelsize - 1 0]);
                    % z用于存储输出特征图像值
                    % 若l=2,size(net.layers{l - 1}.a{1}) = [28, 28, 50],
                    % z = zeros([28, 28, 50] - [5 - 1, 5 - 1, 0]) = zeros([24, 24, 50])
                    for i = 1 : inputmaps   %  for each input map
                        %  convolve with corresponding kernel and add to temp output map
                        z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j}, 'valid');
                        % 将输入与卷积核进行卷积运算,输出未被填充0的部分
                    end
                    %  add bias, pass through nonlinearity
                    net.layers{l}.a{j} = sigm(z + net.layers{l}.b{j});  
                    % 加偏置,采用sigmoid函数进行非线性化
                    % 获得激活函数结果,作为该层输出
                end
                %  set number of input maps to this layers number of outputmaps
                inputmaps = net.layers{l}.outputmaps;
                % 下一层的输入为该层输出特征图像个数
            elseif strcmp(net.layers{l}.type, 's')   %降采样层
                %  downsample
                for j = 1 : inputmaps
                    z = convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) / (net.layers{l}.scale ^ 2), 'valid');   %  !! replace with variable
                    % 上一层输出与2*2且值全为1/4的矩阵进行卷积运算,返回未被填充的部分
                    net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 : net.layers{l}.scale : end, :);
                end
            end
        end
        % 尾部单层感知机
        %  concatenate all end layer feature maps into vector
        net.fv = [];
        for j = 1 : numel(net.layers{n}.a)
            sa = size(net.layers{n}.a{j});    %最后一层
            % sa = [4, 4, 50]
            net.fv = [net.fv; reshape(net.layers{n}.a{j}, sa(1) * sa(2), sa(3))];
            % 重塑为[12, 16, 50];
        end
        % feedforward into output perceptrons
        net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));   %输出
        % sigmoid函数非线性化
        % sigmoid([10, 196] * [196, 50] + 50份偏置)
        % 输出乘以权重
    end

    在cnntrain中,继续运行cnnbp,计算反向误差和梯度。这一部分比较难理解,建议先看一下反向误差传播的原理。代码及注释如下:

    function net = cnnbp(net, y)
        n = numel(net.layers);
        %   error
        net.e = net.o - y;    %神经网络前向过程的输出与期望输出的误差
        %  loss function
        net.L = 1/2* sum(net.e(:) .^ 2) / size(net.e, 2);   
        % 损失函数:均方误差(1/2方便计算微分)
        %%  backprop deltas   误差反向传播
        net.od = net.e .* (net.o .* (1 - net.o));   %  output delta   
        % 输出层误差向上一层(单层感知机)传递
        % error * output * (1-output) 为损失函数相对于参数的偏微分,没考虑学习速度
        net.fvd = (net.ffW' * net.od);              
        % feature vector delta 特征向量误差传递到单层感知机
        if strcmp(net.layers{n}.type, 'c')         %  only conv layers has sigm function 前一层为卷积层时
            net.fvd = net.fvd .* (net.fv .* (1 - net.fv));   
            % sigmoid求导,误差再求导一次,因为卷积结果进行了非线性化
        end
        %  reshape feature vector deltas into output map style
        sa = size(net.layers{n}.a{1});   %最后一层输出map尺寸4*4,共12个,50张
        fvnum = sa(1) * sa(2);   %4*4
        for j = 1 : numel(net.layers{n}.a)   %j=1:12
            net.layers{n}.d{j} = reshape(net.fvd(((j - 1) * fvnum + 1) : j * fvnum, :), sa(1), sa(2), sa(3));
            % 4*4*50 误差矩阵
        end
    
        for l = (n - 1) : -1 : 1   %从后向前
            if strcmp(net.layers{l}.type, 'c')  %卷积层,误差从降采样层获得
                for j = 1 : numel(net.layers{l}.a)
                    net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2);    
                    % expand:多项式展开相乘,将后一层的误差矩阵展开还原(降采样的逆过程)
                    % 仍然为error*output*(1-output)形式
                end
            elseif strcmp(net.layers{l}.type, 's')  %降采样层,误差从卷积层获得,进行反卷积过程
                for i = 1 : numel(net.layers{l}.a)
                    z = zeros(size(net.layers{l}.a{1}));
                    for j = 1 : numel(net.layers{l + 1}.a)
                         z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');    %卷积核旋转180度,反卷积
                    end
                    net.layers{l}.d{i} = z;
                end
            end
        end
    
        %%  calc gradients   计算梯度
        for l = 2 : n   %从前向后
            if strcmp(net.layers{l}.type, 'c')        %卷积层
                for j = 1 : numel(net.layers{l}.a)
                    for i = 1 : numel(net.layers{l - 1}.a)  %前一层
                        net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);   
                        % 卷积核修改量=输入图像*输出图像误差矩阵
                    end
                    net.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3);  %偏置
                end
            end
        end
        % 计算单层感知机梯度(修改量)
        net.dffW = net.od * (net.fv)' / size(net.od, 2);    % 权重修改量
        net.dffb = mean(net.od, 2); % 偏置修改量
    
        function X = rot180(X)
            X = flipdim(flipdim(X, 1), 2);
        end
    end

    在cnntrain中,继续运行cnnapplygrads,根据计算的修改量,更新卷积核的权重。这部分代码我的工具箱里没有,因此我从网上的代码中复制了一份。代码及注释如下:

    function net = cnnapplygrads(net, opts) %使用梯度
        %特征抽取层(卷机降采样)的权重更新
        for l = 2 : numel(net.layers) %从第二层开始
            if strcmp(net.layers{l}.type, 'c')%对于每个卷积层
                for j = 1 : numel(net.layers{l}.a)%枚举该层的每个输出
                    %枚举所有卷积核net.layers{l}.k{ii}{j}
                    for ii = 1 : numel(net.layers{l - 1}.a)%枚举上层的每个输出
                        net.layers{l}.k{ii}{j} = net.layers{l}.k{ii}{j} - opts.alpha * net.layers{l}.dk{ii}{j};
                        % 修正卷积核值
                    end
                    % 修正偏置bias
                    net.layers{l}.b{j} = net.layers{l}.b{j} - opts.alpha * net.layers{l}.db{j};
                end
            end
        end
        %单层感知机的权重更新
        net.ffW = net.ffW - opts.alpha * net.dffW;
        net.ffb = net.ffb - opts.alpha * net.dffb;
    end

    自此,CNN的训练已经完成。接下来利用cnntest测试训练的深度学习神经网络分类准确程度如何。

    function [er, bad] = cnntest(net, x, y)
        %  feedforward
        net = cnnff(net, x);   % 前向传播
        [~, h] = max(net.o);  %输出结果最大值
        [~, a] = max(y);   
        bad = find(h ~= a);  % 预测错误的样本数量
    
        er = numel(bad) / size(y, 2);  % 计算错误概率
    end
  • 相关阅读:
    IE6/IE7浏览器中"float: right"自动换行的解决方法
    IE6/IE7浏览器不支持display: inline-block;的解决方法
    如何解决两个li之间的缝隙
    input、button、a标签 等定义的按钮尺寸的兼容性问题
    在一个页面重复使用一个js函数的方法
    关于让input=text,checkbox居中的解决方法
    遮盖层实现(jQuery+css+html)
    button,input type=button按钮在IE和w3c,firefox浏览器区别
    前端-选项卡(菜单栏)
    形成人、机器、过程和数据的互联互通
  • 原文地址:https://www.cnblogs.com/huangliu1111/p/13672188.html
Copyright © 2011-2022 走看看