zoukankan      html  css  js  c++  java
  • 11.分类与监督学习,朴素贝叶斯分类算法

    1.理解分类与监督学习、聚类与无监督学习。

    简述分类与聚类的联系与区别。

    对于分类来说,在对数据集分类时,我们是知道这个数据集是有多少种类的;而对于聚类来说,在对数据集操作时,我们是不知道该数据集包含多少类,我们要做的,是将数据集中相似的数据归纳在一起。他们都是对数据集的归纳。

    简述什么是监督学习与无监督学习。

    有监督学习即人工给定一组数据,每个数据的属性值也给出,对于数据集中的每个样本,我们想要算法预 测并给出正确答案:回归问题,分类问题。

    无监督学习中,数据是没有标签的或者是有一样的标签的。我们不知道数据的含义和作用,只知道是有一个数据集的。数据集可以判断是有两个数据集,自己进行分类,这就是聚类学习。

    2.朴素贝叶斯分类算法 实例

    利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。

    有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

    目标分类变量疾病:

    –心梗

    –不稳定性心绞痛

    新的实例:–(性别=‘男’,年龄<70, KILLP=‘I',饮酒=‘是’,吸烟≈‘是”,住院天数<7)

    最可能是哪个疾病?

    上传手工演算过程。

    性别

    年龄

    KILLP

    饮酒

    吸烟

    住院天数

    疾病

    1

    >80

    1

    7-14

    心梗

    2

    70-80

    2

    <7

    心梗

    3

    70-81

    1

    <7

    不稳定性心绞痛

    4

    <70

    1

    >14

    心梗

    5

    70-80

    2

    7-14

    心梗

    6

    >80

    2

    7-14

    心梗

    7

    70-80

    1

    7-14

    心梗

    8

    70-80

    2

    7-14

    心梗

    9

    70-80

    1

    <7

    心梗

    10

    <70

    1

    7-14

    心梗

    11

    >80

    3

    <7

    心梗

    12

    70-80

    1

    7-14

    心梗

    13

    >80

    3

    7-14

    不稳定性心绞痛

    14

    70-80

    3

    >14

    不稳定性心绞痛

    15

    <70

    3

    <7

    心梗

    16

    70-80

    1

    >14

    心梗

    17

    <70

    1

    7-14

    心梗

    18

    70-80

    1

    >14

    心梗

    19

    70-80

    2

    7-14

    心梗

    20

    <70

    3

    <7

    不稳定性心绞痛

    3.使用朴素贝叶斯模型对iris数据集进行花分类。

    尝试使用3种不同类型的朴素贝叶斯:

    • 高斯分布型
    • 多项式型
    • 伯努利型

    并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。

  • 相关阅读:
    将jar打包成exe
    CXF + Spring 开发 Webservices
    关于highstock横坐标的一些的一些说明(1)使用UTC时间
    JAX-WS + Spring Integration Example
    EMA指标和MACD指标的JAVA语言实现
    MACD详细计算方法及例子
    notepad 不换行的问题
    eclipse 编码设置(转)
    如何理解作用域
    js中new一个对象的过程
  • 原文地址:https://www.cnblogs.com/huangzixuan/p/12854169.html
Copyright © 2011-2022 走看看