生命游戏
生命游戏的宇宙是一个无限的,其中细胞的二维正交网格,每个细胞处于两种可能的状态之一,即*活着*或*死亡*(分别是*人口稠密*和*无人居住*)。每个细胞与它的八个邻居相互作用,这八个邻居是水平,垂直或对角相邻的细胞。在每一步中,都会发生以下转换:
- 任何有两个以上活着的邻居的活细胞都会死亡,好像是在人口下一样。
- 任何有两三个活着的邻居的活细胞都会生活在下一代。
- 任何有三个以上活着的邻居的活细胞都会死亡,就好像人口过剩一样。
- 任何具有三个活的邻居的死细胞都会变成一个活细胞,就像是通过繁殖一样。
其简单动画效果如:
其主要实现逻辑代码出自Effective Python一书中。不过原代码中的生命游戏是静止的,把每一代分别打印出来,没有动画效果,我增加部分代码,实现在终端的动画效果。
动画实现原理是:
x1b[nA] 光标上移
x1b[nB] 光标下移
x1b[nC] 光标右移
x1b[nD] 光标左移
(n为字符数)控制光标位置是通过ANSI转义符实现的。从这篇文章获得相关知识的:https://www.zhihu.com/question/21100416/answer/208143599
第一代细胞(预设生存环境在 X * Y 的二维平面方格上)随机生成,将其打印在控制台上,然后此时控制台光标会从初始位置(方格左上角(1,1)上)到方格右下角(X,Y)的位置。下一代细胞打印前通过移动控制台的光标到初始位置(1,1)上,此后的打印这代细胞就会覆盖前一代细胞。造成视觉上的动画效果。
全部代码如下:
1 import os 2 import sys 3 import time 4 import random 5 from collections import namedtuple 6 7 8 ALIVE = '*' 9 EMPTY = ' ' 10 11 12 Query = namedtuple('Query', ('y', 'x')) 13 14 def count_neighbors(y, x): 15 n_ = yield Query(y + 1, x + 0) # North 16 ne = yield Query(y + 1, x + 1) # Northeast 17 e_ = yield Query(y + 0, x + 1) # East 18 se = yield Query(y - 1, x + 1) # Southeast 19 s_ = yield Query(y - 1, x + 0) # South 20 sw = yield Query(y - 1, x - 1) # Southwest 21 w_ = yield Query(y + 0, x - 1) # West 22 nw = yield Query(y + 1, x - 1) # Northwest 23 neighbor_states = [n_, ne, e_, se, s_, sw, w_, nw] 24 count = 0 25 for state in neighbor_states: 26 if state == ALIVE: 27 count += 1 28 return count 29 30 Transition = namedtuple('Transition', ('y', 'x', 'state')) 31 32 def step_cell(y, x): 33 state = yield Query(y, x) 34 neighbors = yield from count_neighbors(y, x) 35 next_state = game_logic(state, neighbors) 36 yield Transition(y, x, next_state) 37 38 39 def game_logic(state, neighbors): 40 if state == ALIVE: 41 if neighbors < 2: 42 return EMPTY # Die: Too few 43 elif neighbors > 3: 44 return EMPTY # Die: Too many 45 else: 46 if neighbors == 3: 47 return ALIVE # Regenerate 48 return state 49 50 51 TICK = object() 52 53 def simulate(height, width): 54 while True: 55 for y in range(height): 56 for x in range(width): 57 yield from step_cell(y, x) 58 yield TICK 59 60 61 class Grid(object): 62 def __init__(self, height, width): 63 self.height = height 64 self.width = width 65 self.rows = [] 66 for _ in range(self.height): 67 self.rows.append([EMPTY] * self.width) 68 69 def query(self, y, x): 70 return self.rows[y % self.height][x % self.width] 71 72 def assign(self, y, x, state): 73 self.rows[y % self.height][x % self.width] = state 74 75 def random_alive(self, live_count): 76 xy = [(i,j) for i in range(self.width) for j in range(self.height)] 77 for i,j in random.sample(xy, live_count): 78 self.assign(i, j, ALIVE) 79 80 def live_a_generation(self,grid, sim): 81 # self.change_state(EMPTY) 82 progeny = Grid(grid.height, grid.width) 83 item = next(sim) 84 while item is not TICK: 85 if isinstance(item, Query): 86 state = grid.query(item.y, item.x) 87 item = sim.send(state) 88 else: # Must be a Transition 89 progeny.assign(item.y, item.x, item.state) 90 item = next(sim) 91 return progeny 92 93 def __str__(self): 94 output = '' 95 for row in self.rows: 96 for cell in row: 97 output += cell 98 output += ' ' 99 return output.strip() 100 101 102 def main(x,y,k): 103 os.system('cls') # linux 为 clear 104 grid = Grid(x, y) 105 grid.random_alive(k) 106 clear = 'x1b[{}Ax1b[{}D'.format(x,y) 107 print(grid, end='') 108 sim = simulate(grid.height, grid.width) 109 while 1: 110 time.sleep(.1) 111 grid = grid.live_a_generation(grid, sim) 112 print(clear) 113 print(grid, end='') 114 time.sleep(.1) 115 print(clear) 116 117 if __name__ == '__main__': 118 main(30,40,205)