zoukankan      html  css  js  c++  java
  • LaTeX技巧10:LaTeX数学公式输入初级入门

     

    LaTeX最强大的功能就是显示美丽的数学公式,下面我们来看这些公式是怎么实现的。

    1、数学公式的前后要加上 $ 或 ( 和 ),比如:$f(x) = 3x + 7$ 和 (f(x) = 3x + 7) 效果是一样的;
    如果用 [ 和 ],或者使用 $$ 和 $$,则改公式独占一行;
    如果用 egin{equation} 和 end{equation},则公式除了独占一行还会自动被添加序号, 如何公式不想编号则使用 egin{equation*} 和 end{equation*}.

    2、字符
    普通字符在数学公式中含义一样,除了
    # $ % & ~ _ ^ { }
    若要在数学环境中表示这些符号# $ % & _ { },需要分别表示为# $ \% & \_ { },即在个字符前加上。

    3、上标和下标
    用 ^ 来表示上标,用 _ 来表示下标,看一简单例子:

    $$sum_{i=1}^n a_i=0$$
    $$f(x)=x^{x^x}$$

    效果:

    LaTeX技巧10:LaTeX数学公式输入初级入门

    这里有更多的LaTeX上标下标的设置

    4、希腊字母
    更多请参见这里

    5、数学函数

    6、在公式中插入文本可以通过 mbox{text} 在公式中添加text,比如:

    documentclass{article}
    usepackage{CJK}
    egin{CJK*}{GBK}{song}
    egin{document}
    $$mbox{对任意的$x>0$}, mbox{有 }f(x)>0. $$
    end{CJK*}
    end{document}

    效果:

    LaTeX技巧10:LaTeX数学公式输入初级入门

    7、分数及开方
    frac{numerator}{denominator} sqrt{expression_r_r_r}表示开平方,
    sqrt[n]{expression_r_r_r} 表示开 n 次方.

    8、省略号(3个点)
    ldots 表示跟文本底线对齐的省略号;cdots 表示跟文本中线对齐的省略号,

    比如:

    LaTeX技巧10:LaTeX数学公式输入初级入门

    表示为 $$f(x_1,x_x,ldots,x_n) = x_1^2 + x_2^2 + cdots + x_n^2 $$

    9、括号和分隔符
    () 和 [ ] 和 | 对应于自己;
    {} 对应于 { };
    || 对应于 |。
    当要显示大号的括号或分隔符时,要对应用 left 和 ight,如:

    [f(x,y,z) = 3y^2 z left( 3 + frac{7x+5}{1 + y^2} ight).]对应于

    LaTeX技巧10:LaTeX数学公式输入初级入门

    left. 和 ight. 只用与匹配,本身是不显示的,比如,要输出:

    LaTeX技巧10:LaTeX数学公式输入初级入门

    则用 $$left. frac{du}{dx} ight|_{x=0}.$$

    10、多行的数学公式

    LaTeX技巧10:LaTeX数学公式输入初级入门

    可以表示为:

    egin{eqnarray*}
    cos 2 heta & = & cos^2 heta - sin^2 heta \
    & = & 2 cos^2 heta - 1.
    end{eqnarray*}

    其中&是对其点,表示在此对齐。
    *使latex不自动显示序号,如果想让latex自动标上序号,则把*去掉

    11、矩阵

    LaTeX技巧10:LaTeX数学公式输入初级入门

    表示为:

    The emph{characteristic polynomial} $chi(lambda)$ of the
    $3 imes 3$~matrix
    [ left( egin{array}{ccc}
    a & b & c \
    d & e & f \
    g & h & i end{array} ight)]
    is given by the formula
    [ chi(lambda) = left| egin{array}{ccc}
    lambda - a & -b & -c \
    -d & lambda - e & -f \
    -g & -h & lambda - i end{array} ight|.]

    c表示向中对齐,l表示向左对齐,r表示向右对齐。

    12、导数、极限、求和、积分(Derivatives, Limits, Sums and Integrals)

    The expression_r_r_rs

    LaTeX技巧10:LaTeX数学公式输入初级入门

    are obtained in LaTeX by typing

    frac{du}{dt} and frac{d^2 u}{dx^2}

    respectively. The mathematical symbol LaTeX技巧10:LaTeX数学公式输入初级入门 is produced using partial. Thus the Heat Equation

    LaTeX技巧10:LaTeX数学公式输入初级入门

    is obtained in LaTeX by typing

    [ frac{partial u}{partial t}
    = h^2 left( frac{partial^2 u}{partial x^2}
    + frac{partial^2 u}{partial y^2}
    + frac{partial^2 u}{partial z^2} ight)]

    To obtain mathematical expression_r_r_rs such as

    LaTeX技巧10:LaTeX数学公式输入初级入门

    in displayed equations we type lim_{x o +infty}, inf_{x > s} and sup_Krespectively. Thus to obtain

    LaTeX技巧10:LaTeX数学公式输入初级入门

    (in LaTeX) we type

    [ lim_{x o 0} frac{3x^2 +7x^3}{x^2 +5x^4} = 3.]

    To obtain a summation sign such as

    LaTeX技巧10:LaTeX数学公式输入初级入门

    we type sum_{i=1}^{2n}. Thus

    LaTeX技巧10:LaTeX数学公式输入初级入门

    is obtained by typing

    [ sum_{k=1}^n k^2 = frac{1}{2} n (n+1).]

    We now discuss how to obtain integrals in mathematical documents. A typical integral is the following:

    LaTeX技巧10:LaTeX数学公式输入初级入门

    This is typeset using

    [ int_a^b f(x)\,dx.]

    The integral sign is typeset using the control sequence int, and the limits of integration (in this case a and b are treated as a subscript and a superscript on the integral sign.
    Most integrals occurring in mathematical documents begin with an integral sign and contain one or more instances of d followed by another (Latin or Greek) letter, as in dx, dy and dt. To obtain the correct appearance one should put extra space before the d, using \,. Thus

    LaTeX技巧10:LaTeX数学公式输入初级入门

    LaTeX技巧10:LaTeX数学公式输入初级入门

    LaTeX技巧10:LaTeX数学公式输入初级入门

    and

    LaTeX技巧10:LaTeX数学公式输入初级入门

    are obtained by typing

    [ int_0^{+infty} x^n e^{-x} \,dx = n!.]
    [ int cos heta \,d heta = sin heta.]
    [ int_{x^2 + y^2 leq R^2} f(x,y)\,dx\,dy
    = int_{ heta=0}^{2pi} int_{r=0}^R
    f(rcos heta,rsin heta) r\,dr\,d heta.]

    and

    [ int_0^R frac{2x\,dx}{1+x^2} = log(1+R^2).]

    respectively.

    In some multiple integrals (i.e., integrals containing more than one integral sign) one finds that LaTeX puts too much space between the integral signs. The way to improve the appearance of of the integral is to use the control sequence ! to remove a thin strip of unwanted space. Thus, for example, the multiple integral

    LaTeX技巧10:LaTeX数学公式输入初级入门

    is obtained by typing

    [ int_0^1 ! int_0^1 x^2 y^2\,dx\,dy.]

    Had we typed

    [ int_0^1 int_0^1 x^2 y^2\,dx\,dy.]

    we would have obtained

    LaTeX技巧10:LaTeX数学公式输入初级入门

    A particularly noteworthy example comes when we are typesetting a multiple integral such as

    LaTeX技巧10:LaTeX数学公式输入初级入门

    Here we use ! three times to obtain suitable spacing between the integral signs. We typeset this integral using

    [ int !!! int_D f(x,y)\,dx\,dy.]

    Had we typed

    [ int int_D f(x,y)\,dx\,dy.]

    we would have obtained

    LaTeX技巧10:LaTeX数学公式输入初级入门

    The following (reasonably complicated) passage exhibits a number of the features which we have been discussing:

    LaTeX技巧10:LaTeX数学公式输入初级入门

    One would typeset this in LaTeX by typing In non-relativistic wave mechanics, the wave function
    $psi(mathbf{r},t)$ of a particle satisfies the
    emph{Schr"{o}dinger Wave Equation}
    [ ihbarfrac{partial psi}{partial t}
    = frac{-hbar^2}{2m} left(
    frac{partial^2}{partial x^2}
    + frac{partial^2}{partial y^2}
    + frac{partial^2}{partial z^2}
    ight) psi + V psi.]
    It is customary to normalize the wave equation by
    demanding that
    [ int !!! int !!! int_{ extbf{R}^3}
    left| psi(mathbf{r},0) ight|^2\,dx\,dy\,dz = 1.]
    A simple calculation using the Schr"{o}dinger wave
    equation shows that
    [ frac{d}{dt} int !!! int !!! int_{ extbf{R}^3}
    left| psi(mathbf{r},t) ight|^2\,dx\,dy\,dz = 0,]
    and hence
    [ int !!! int !!! int_{ extbf{R}^3}
    left| psi(mathbf{r},t) ight|^2\,dx\,dy\,dz = 1]
    for all times~$t$. If we normalize the wave function in this
    way then, for any (measurable) subset~$V$ of $ extbf{R}^3$
    and time~$t$,
    [ int !!! int !!! int_V

    left| psi(mathbf{r},t) ight|^2\,dx\,dy\,dz]
    represents the probability that the particle is to be found
    within the region~$V$ at time~$t$.

  • 相关阅读:
    HTML CSS3 手风琴菜单
    python代码- post请求图片上传
    python 一行代码生成 二维码
    Jenkins 中定时任务构建
    Jenkins 常用插件
    window系统,GitLab 远程与本地 SSH 认证连接
    Jmeter+Maven+Jenkins+Git接口自动化流程
    jmeter 响应中有中文乱码问题,解决
    Excel文件导入功能 用例设计思路
    Jmeter01 -mac下的安装
  • 原文地址:https://www.cnblogs.com/huashiyiqike/p/3413120.html
Copyright © 2011-2022 走看看