zoukankan      html  css  js  c++  java
  • MILtracking目标跟踪解析

    MILtracking目标跟踪解析

    三种概率

    在传统的机器学习中,样本只有一个包标签。但是在MIL中,有样本与样本集合的概念,样本集合有包标签(y_{bag}​)(若集合含有正样本,包标签为1,否则0),故样本除了具有样本标签(y_{sample}​)还有包标签(y_{bag}​)。通过Noisy-OR模型可以由集合各元素的样本标签计算该集合的包标签:

    [pleft( y_{bag}=1left| ight.X_{n} ight)=1-prod_{n} left(1-pleft(y_{bag}=1left| ight. x_{i} ight ) ight ) ]

    其中(X_{n})是含有n个样本的集合(x_{i})是集合中的一个元素。

    样本包标签后验概率推导

    对于任意一个样本(x)(pleft( y_{bag}=1left| ight.x ight)),我们可以通过naive bayes导出:

    [egin{split} pleft( y_{bag}=1left| ight.x ight) &=frac{pleft( xleft| ight. y_{bag}=1 ight)pleft(y_{bag}=1 ight)}{pleft( xleft| ight. y_{bag}=0 ight)pleft(y_{bag}=0 ight)+pleft( xleft| ight. y_{bag}=1 ight)pleft(y_{bag}=1 ight)} \ &=frac{A}{B+A}=frac{1}{{frac{A}{B}}^{-1}+1}=frac{1}{e^{-lnfrac{A}{B}}+1}=sigmaleft( lnfrac{A}{B} ight)\ &=sigma left( lnfrac{pleft( xleft| ight. y_{bag}=1 ight)pleft(y_{bag}=1 ight)}{pleft( xleft| ight. y_{bag}=0 ight)pleft(y_{bag}=0 ight)} ight)\ \ &又因为pleft(y_{bag}=1 ight)=pleft(y_{bag}=0 ight)\ \ &=sigma left( lnfrac{pleft( xleft| ight. y_{bag}=1 ight)}{pleft( xleft| ight. y_{bag}=0 ight)} ight)\ \ &又因为服从naive bayes假设(观测样本维度独立) \ &=sigma left( lnfrac{prod pleft( x_{i}left| ight. y_{bag}=1 ight)}{prod pleft( x_{i}left| ight. y_{bag}=0 ight)} ight)=sigma left( ln prod frac{ pleft( x_{i}left| ight. y_{bag}=1 ight)}{ pleft( x_{i}left| ight. y_{bag}=0 ight)} ight)\ &=sigma left( sum lnfrac{ pleft( x_{i}left| ight. y_{bag}=1 ight)}{ pleft( x_{i}left| ight. y_{bag}=0 ight)} ight) end{split} ]

    弱分类器与强分类器

    设弱分类器

    [h_{i}= lnfrac{ pleft( x_{i}left| ight. y_{bag}=1 ight)}{ pleft( x_{i}left| ight. y_{bag}=0 ight)} ]

    (h_{1},h_{2},...,h_{n})级联构成的强分类器为

    [H_{n}=sum lnfrac{ pleft( x_{i}left| ight. y_{bag}=1 ight)}{ pleft( x_{i}left| ight. y_{bag}=0 ight)}=sum h_{i} ]

    在上一次跟踪结果附近某范围采样一个集合(X_{near}),远处采样一个集合(X_{far}).假设跟踪结果有漂移,但真实位置仍然落在(X_{near}),则(X_{near})的包标签为1,(X_{far})的包标签为0,即已知了包标签。进而可求取(pleft( x_{i}left| ight. y_{bag}=1 ight))(pleft( x_{i}left| ight. y_{bag}=0 ight))的分布

    [pleft( x_{i}left| ight. y_{bag}=1 ight) sim Nleft( mu_{i}^{near},sigma_{i}^{near} ight), pleft( x_{i}left| ight. y_{bag}=0 ight) sim Nleft( mu_{i}^{far},sigma_{i}^{far} ight)]

  • 相关阅读:
    输出流
    异常处理
    异常限制
    多个受控异常
    跟踪异常传播
    动手动脑练习2
    动手动脑练习
    文件总结
    程序员修炼之道3
    Shell教程 之printf命令
  • 原文地址:https://www.cnblogs.com/huaxiaforming/p/7235797.html
Copyright © 2011-2022 走看看