zoukankan      html  css  js  c++  java
  • SLR

    梯度下降是一阶优化方法。它只考虑损失函数的一阶导数,而不考虑更高阶的导数。这基本上意味着它不知道损失函数的曲率。它只能说明损失是否下降以及下降的速度,而不能区分曲线是平坦的,向上的,还是向下的。

    network.py

    import time
    
    from keras.callbacks import EarlyStopping, ReduceLROnPlateau
    from keras.layers import *
    from keras.layers.convolutional import *
    from keras.layers.core import *
    from keras.models import Model
    from keras.optimizers import adam
    
    import processor
    from path import MODEL_PATH
    
    
    def one_obj(frame_l=32, joint_n=25, joint_d=3, words_size=500):
        input_joints = Input(name='joints', shape=(frame_l, joint_n, joint_d))
        input_joints_diff = Input(name='joints_diff', shape=(frame_l, joint_n, joint_d))
    
        x = Conv2D(filters=64, kernel_size=(1, 1), padding='same')(input_joints)
        x = BatchNormalization()(x)
        x = LeakyReLU()(x)  # @LeakyReLU()(x)
    
        x = Conv2D(filters=32, kernel_size=(3, 1), padding='same')(x)
        x = BatchNormalization()(x)
        x = LeakyReLU()(x)  # LeakyReLU()(x)
    
        x = Permute((1, 3, 2))(x)
    
        x = Conv2D(filters=32, kernel_size=(3, 3), padding='same')(x)
        x = BatchNormalization()(x)
        x = LeakyReLU()(x)  # LeakyReLU()(x)
        x = MaxPool2D(pool_size=(2, 2))(x)
        x = Conv2D(filters=64, kernel_size=(3, 3), padding='same')(x)
        x = LeakyReLU()(x)  # BatchNormalization()(x)
        x = MaxPool2D(pool_size=(2, 2))(x)
    
        x_d = Conv2D(filters=64, kernel_size=(1, 1), padding='same')(input_joints_diff)
        x_d = BatchNormalization()(x_d)
        x_d = LeakyReLU()(x_d)  # LeakyReLU()(x_d)
    
        x_d = Conv2D(filters=32, kernel_size=(3, 1), padding='same')(x_d)
        x_d = BatchNormalization()(x_d)
        x_d = LeakyReLU()(x_d)  # LeakyReLU()(x_d)
    
        x_d = Permute((1, 3, 2))(x_d)
    
        x_d = Conv2D(filters=32, kernel_size=(3, 3), padding='same')(x_d)
        x_d = BatchNormalization()(x_d)
        x_d = LeakyReLU()(x_d)  # LeakyReLU()(x_d)
        x_d = MaxPool2D(pool_size=(2, 2))(x_d)
        x_d = Conv2D(filters=64, kernel_size=(3, 3), padding='same')(x_d)
        x_d = BatchNormalization()(x_d)
        x_d = LeakyReLU()(x_d)  # LeakyReLU()(x_d)
        x_d = MaxPool2D(pool_size=(2, 2))(x_d)
    
        x = concatenate([x, x_d], axis=-1)
    
        x = Conv2D(filters=128, kernel_size=(1, 1), padding='same')(x)
        x = BatchNormalization()(x)
        x = LeakyReLU()(x)  # LeakyReLU()(x)
        x = MaxPool2D(pool_size=(2, 2))(x)
        x = Dropout(0.1)(x)
    
        x = Conv2D(filters=256, kernel_size=(1, 1), padding='same')(x)
        x = BatchNormalization()(x)
        x = LeakyReLU()(x)  # LeakyReLU()(x)
        x = MaxPool2D(pool_size=(2, 2))(x)
        x = Dropout(0.1)(x)
        x = Flatten()(x)
        x = Dense(256)(x)
        x = LeakyReLU()(x)  # LeakyReLU()(x)
        x = Dense(words_size, activation='softmax')(x)
        model = Model([input_joints, input_joints_diff], x)
    
        return model
    
    
    class SLRNetwork():
        # 定义神经网络
        def __init__(self, words_size, is_training=True):
            self.words_size = words_size
            self.is_training = is_training
            model = one_obj(processor.MAX_DEPTH, processor.NUM_KEYPOINT, 2, words_size)
            opt = adam(0.005, epsilon=1e-8)
            model.compile(opt, 'categorical_crossentropy', metrics=['acc'])
            self.model = model
    
        def train_speech_to_text_network(self, epochs, batch_size, dataset, model_helper, cont_train=False):
            model = self.model
            early = EarlyStopping(monitor="loss", mode="min", patience=10)
            lr_change = ReduceLROnPlateau(monitor="loss", verbose=1, factor=0.2, patience=100, min_lr=1e-8, cooldown=100)
            if cont_train:
                model_helper.load_model(model, MODEL_PATH)
            lr_change.set_model(model)
            lr_change.on_train_begin()
            best_acc = 0.0
            for epoch in epochs:
                start = time.clock()
                x_train, y_train, _, _ = dataset.next_batch(batch_size, test_data=False)
                loss_batch = model.train_on_batch(x=x_train, y=y_train)
                lr_change.on_epoch_end(epoch, logs={"loss": loss_batch[0]})
                print(epoch, time.clock() - start, loss_batch)
                if epoch % 10 == 0:
                    _, _, x_test, y_test = dataset.next_batch(batch_size, test_data=True, test_size=1024)
                    val = model.evaluate(x_test, y_test, batch_size=batch_size)
                    print('val data info', val)
                    if val[1] > best_acc:
                        best_acc = val[1]
                        model_helper.save_model(model, MODEL_PATH)
    
  • 相关阅读:
    Prototype
    Builder Pattern
    Chain of Responsibility
    Flyweight
    HBase概念学习(九)HTablePool为何弃用?
    用web查看hadoop运行状态
    Hadoop的位置
    SQLServer的TDE加密
    Log4Net advanced pattern tips
    Forrest Gump
  • 原文地址:https://www.cnblogs.com/hugeng007/p/10645515.html
Copyright © 2011-2022 走看看