zoukankan      html  css  js  c++  java
  • LookingFastandSlow: Memory-GuidedMobileVideoObjectDetection

    Google put the method to extract different feature
    based on Slow Network and Fast Network

    The First Colum The Second Column
    innovation point1 基于存储引导的交替模型
    InterIeaved Models slow network and fastnetwork
    is made up by two MobilNetV2
    the depth multiplier of the two models are different,
    before is 1.4,and the after is 0.35
    innovation point2 记忆单元, Memory module
    存储模型,
    LSTM可以高效处理时序信息
    但是卷积运算量大
    ConvLSTM将CNN与LSTM结合
    ConLSTM is designed by the
    时序时间信息的图像
    1 innovation of the ConvLSTM 增加了bottleneck Gate 和output 的跳跃连接
    2 innovation of the ConvLSTM 将LSTM单元进行分组卷积
    feature maps 原本是H * W * N
    将其分为G group
    每个LSTM处理的HWN/G 的feature maps
    the step of LSTM the first step :
    f(t) = sigmoid(W(f) * [h(t-1), x(t)] + b(f) )
    LSTM include the activate function (sigmoid)
    and the action (pointwise)
    the first of the LSTM is sigmoid
    The step of LSTM The second step : i(t) = sigmoid( W(i) * [ h(t-1), x(t)] + b(i) );
    C~(t) = tanh( W(C)* [h(t-1), x(t)] + b(c) )
    Tanh create a new 候选值vector
    The step of LSTM The third step :
    C(t) = f(t) * C(t-1) + i(t) * C~(t)
  • 相关阅读:
    SpringBoot整合RabbitMQ
    NIO
    eclipse配置maven
    IDEA常用快捷键
    IDEA如何快速查看类中的属性和方法?
    Java之IO流
    JS判断对象是否包含某个属性
    Jquery获取链接请求的参数
    JS中indexOf的用法
    JS驼峰与下划线互转
  • 原文地址:https://www.cnblogs.com/hugeng007/p/11145903.html
Copyright © 2011-2022 走看看