zoukankan      html  css  js  c++  java
  • LookingFastandSlow: Memory-GuidedMobileVideoObjectDetection

    Google put the method to extract different feature
    based on Slow Network and Fast Network

    The First Colum The Second Column
    innovation point1 基于存储引导的交替模型
    InterIeaved Models slow network and fastnetwork
    is made up by two MobilNetV2
    the depth multiplier of the two models are different,
    before is 1.4,and the after is 0.35
    innovation point2 记忆单元, Memory module
    存储模型,
    LSTM可以高效处理时序信息
    但是卷积运算量大
    ConvLSTM将CNN与LSTM结合
    ConLSTM is designed by the
    时序时间信息的图像
    1 innovation of the ConvLSTM 增加了bottleneck Gate 和output 的跳跃连接
    2 innovation of the ConvLSTM 将LSTM单元进行分组卷积
    feature maps 原本是H * W * N
    将其分为G group
    每个LSTM处理的HWN/G 的feature maps
    the step of LSTM the first step :
    f(t) = sigmoid(W(f) * [h(t-1), x(t)] + b(f) )
    LSTM include the activate function (sigmoid)
    and the action (pointwise)
    the first of the LSTM is sigmoid
    The step of LSTM The second step : i(t) = sigmoid( W(i) * [ h(t-1), x(t)] + b(i) );
    C~(t) = tanh( W(C)* [h(t-1), x(t)] + b(c) )
    Tanh create a new 候选值vector
    The step of LSTM The third step :
    C(t) = f(t) * C(t-1) + i(t) * C~(t)
  • 相关阅读:
    vue-cli与后台数据交互增删改查
    echart地图下钻
    Vue中data重置问题
    页面滚动tab监听
    less笔记
    bootstrap-table 行内编辑
    bootstrap-table固定表头固定列
    微信分享配置(js-sdk)
    npm查看全局安装过的包
    页面固定定位超出一屏
  • 原文地址:https://www.cnblogs.com/hugeng007/p/11145903.html
Copyright © 2011-2022 走看看