
the conception of Machine Learning 1

Hidden layer

[Heteroskedasticity](https://blog.csdn.net/dingming001/article/details/73826630)

Hessian Matrix

Hyperparameter tuning

How To Choose Hidden Unit Activiation Functions

Bias-Variance Tradeoff

alpha in ridge regression

Bootstrapping,[Transmission Gate](https://blog.csdn.net/batuwuhanpei/article/details/51884351)

capacity

Common Optimizers of Neural Nets

K-Fold Cross-Validation

Common Output Layer Activation Functions

Concave & convex function

cross-entropy

conditional probability

Cost and Lost Functions

Confidence Intervals

F1


Exploding Gradient Problem

error type

Finding Linear Regression Parameters

Gradient Descent

Gradient Descent rule of thume
The Unknow Word
The First Column |
The Second Column |
thume |
|