![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180811142533754-801188740.png)
the conception of Machine Learning 1
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813190017173-1993944322.png)
Hidden layer
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813190722630-543298115.png)
[Heteroskedasticity](https://blog.csdn.net/dingming001/article/details/73826630)
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813191058956-1982762669.png)
Hessian Matrix
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813191203063-303340691.png)
Hyperparameter tuning
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813191332194-2105381477.png)
How To Choose Hidden Unit Activiation Functions
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813192628789-1132974819.png)
Bias-Variance Tradeoff
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813192736450-705980704.png)
alpha in ridge regression
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813192858226-1333617355.png)
Bootstrapping,[Transmission Gate](https://blog.csdn.net/batuwuhanpei/article/details/51884351)
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813200425041-1915820492.png)
capacity
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813200552156-924134176.png)
Common Optimizers of Neural Nets
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813200907325-2027360664.png)
K-Fold Cross-Validation
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813201023334-80794909.png)
Common Output Layer Activation Functions
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813201136002-269893593.png)
Concave & convex function
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813201247839-1019677043.png)
cross-entropy
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813201524590-1219593387.png)
conditional probability
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813201652639-235186182.png)
Cost and Lost Functions
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180813201754145-1088617223.png)
Confidence Intervals
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180819125500275-865496410.png)
F1
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180819131511278-806112454.png)
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180819131803070-767042887.png)
Exploding Gradient Problem
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180819131907926-942758464.png)
error type
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180819132008328-387126842.png)
Finding Linear Regression Parameters
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180819132939540-293610942.png)
Gradient Descent
![](https://images2018.cnblogs.com/blog/1433065/201808/1433065-20180819133134665-1311422442.png)
Gradient Descent rule of thume
The Unknow Word
The First Column |
The Second Column |
thume |
|