zoukankan      html  css  js  c++  java
  • CF916E Jamie and Tree 题解

    参考博文

    题目大意:

    有一棵(n)个节点的有根树,标号为(1-n),你需要维护以下三种操作

    1.给定一个点(v),将整颗树的根变为(v)

    2.给定两个点(u), (v),将(lca(u, v))所在的子树都加上(x)

    3.给定一个点(v),你需要回答以v所在的子树的权值和

    分析:

    我们要写一个数据结构,支持换根,子树修改,子树查询,找最近公共祖先

    先以(1)为根进行一遍树剖

    接着逐个分析qaq

    1.换根

    直接换掉,没什么好说的

    2.子树修改

    我们要分类讨论,为了叙述方便,记(x,y)在原树中的(LCA)(lca(x,y))

    对于任意一点x,有以下几种情况:

    ((1)x=root),修改整棵树

    ((2)lca(x,root)!=x),那么换根不影响子树,直接修改

    ((3)lca(x,root)=x),可以画图证明(x)的子树就是(x)原有的子树减去(x)(root)所在的一个“树枝”,所以我们先修改整棵树,在将(root)所在的树枝还原

    3.LCA

    我们不妨默认(dep[x]leq dep[y])

    进行分类讨论:

    ((1)lca(x,y)=x)

    (1)root)(y)的子树中,那么答案为(y)

    (2)root)(x)(y)之间,那么答案为(root)

    (3)root)在其他位置,那么答案为(x)

    ((2)lca(x,y)!=x)

    (1)root)(x)的子树中,那么答案为(x)

    (2)root)(y)的子树中,那么答案为(y)

    (3)root)(x)(y)的路径上,那么答案为(root)

    (4))(lca(x,root)=lca(y,root)),即(root)在下图所示位置,答案为(lca(x,y))

    (5))(lca(x,y)!=lca(x,root)),即(root)在下图位置,答案为(lca(x,root))

    (6))(lca(x,y)!=lca(y,root)),即(root)在下图位置,答案为(lca(y,root))

    4.子树查询

    同2

    #include <bits/stdc++.h>
    #define int long long
    #define ls o<<1
    #define rs o<<1|1
    using namespace std ;
    const int MAXN = 300005 ;
    struct Node {
        int next , to ;
    } edge[ MAXN << 1 ] ;
    int head[ MAXN ] , cnt ;
    int root , n , m , r , tot ;
    int a[ MAXN ] , dep[ MAXN ] , fa[ MAXN ] , siz[ MAXN ] , son[ MAXN ] , id[ MAXN ] , w[ MAXN ] , top[ MAXN ] ;
    int ans[ MAXN << 2 ] , tag[ MAXN << 2 ] ;
    inline int read ()  {
        int tot = 0 , f = 1 ; char c = getchar () ;
        while ( c < '0' || c > '9' ) { if ( c == '-' ) f = -1 ; c = getchar () ; }
        while ( c >= '0' && c <= '9' ) { tot = tot * 10 + c - '0' ; c = getchar () ; }
        return tot * f ;
    }
    inline void add ( int x , int y ) {
        edge[ ++ cnt ].next = head[ x ] ;
        edge[ cnt ].to = y ;
        head[ x ] = cnt ;
    }
    inline void pushup ( int o ) { ans[ o ] = ans[ ls ] + ans[ rs ] ; }
    inline void pushdown ( int o , int l , int r ) {
        if ( tag[ o ] == 0 ) return ;
        int mid = ( l + r ) >> 1 ;
        ans[ ls ] += tag[ o ] * ( mid - l + 1 ) ;
        ans[ rs ] += tag[ o ] * ( r - mid ) ;
        tag[ ls ] += tag[ o ] ; tag[ rs ] += tag[ o ] ;
        tag[ o ] = 0 ;
    }
    inline void build ( int o , int l , int r ) {
        if ( l == r ) {
            ans[ o ] = w[ l ] ;
            return ;
        }
        int mid = ( l + r ) >> 1 ;
        build ( ls , l , mid ) ;
        build ( rs , mid + 1 , r ) ;
        pushup ( o ) ;
    }
    inline void update ( int o , int l , int r , int nl , int nr , int p ) {
        if ( l >= nl && r <= nr ) {
            ans[ o ] += p * ( r - l + 1 ) ;
            tag[ o ] += p ;
            return ;
        }
        pushdown ( o , l , r ) ;
        int mid = ( l + r ) >> 1 ;
        if ( nl <= mid ) update ( ls , l , mid , nl , nr , p ) ;
        if ( nr > mid ) update ( rs , mid + 1 , r , nl , nr , p ) ;
        pushup ( o ) ;
    }
    inline int query ( int o , int l , int r , int nl , int nr ) {
        if ( l >= nl && r <= nr ) return ans[ o ] ;
        pushdown ( o , l , r ) ;
        int mid = ( l + r ) >> 1 ;
        int res = 0 ;
        if ( nl <= mid ) res += query ( ls , l , mid , nl , nr ) ;
        if ( nr > mid ) res += query ( rs , mid + 1 , r , nl , nr ) ;
        return res ;
    }
    inline void dfs1 ( int u , int f , int deep ) {
        dep[ u ] = deep ;
        fa[ u ] = f ;
        siz[ u ] = 1 ;
        for ( int i = head[ u ] ; i ; i = edge[ i ].next ) {
            int v = edge[ i ].to ;
            if ( v == f ) continue ;
            dfs1 ( v , u , deep + 1 ) ;
            siz[ u ] += siz[ v ] ;
            if ( siz[ v ] > siz[ son[ u ] ] || son[ u ] == 0 ) son[ u ] = v ;
        }
    }
    inline void dfs2 ( int u , int tp ) {
        id[ u ] = ++ tot ;
        w[ tot ] = a[ u ] ;
        top[ u ] = tp ;
        if ( !son[ u ] ) return ;
        dfs2 ( son[ u ] , tp ) ;
        for ( int i = head[ u ] ; i ; i = edge[ i ].next ) {
            int v = edge[ i ].to ;
            if ( v == fa[ u ] || v == son[ u ] ) continue ;
            dfs2 ( v , v ) ;
        }
    }
    inline int lca ( int x , int y ) {
        while ( top[ x ] != top[ y ] ) {
            if ( dep[ top[ x ] ] < dep[ top[ y ] ] ) swap ( x , y ) ;
            x = fa[ top[ x ] ] ;
        }
        if ( dep[ x ] > dep[ y ] ) swap ( x , y ) ;
        return x ;
    }
    inline int find ( int x , int y ) {
        while ( top[ x ] != top[ y ] ) {
            if ( dep[ top[ x ] ] < dep[ top[ y ] ] ) swap ( x , y ) ;
            if ( fa[ top[ x ] ] == y ) return top[ x ] ;
            x = fa[ top[ x ] ] ;
        }
        if ( dep[ x ] > dep[ y ] ) swap ( x , y ) ;
        return son[ x ] ;
    }
    inline int LCA ( int x , int y ) {
        if ( dep[ x ] > dep[ y ] ) swap ( x , y ) ;
        if ( lca ( x , y ) == x ) {
            if ( id[ root ] >= id[ y ] && id[ root ] <= id[ y ] + siz[ y ] - 1 ) return y ;
            if ( lca ( x , root ) == x ) return lca ( y , root ) ;
            return x ;
        }
        if ( id[ root ] >= id[ x ] && id[ root ] <= id[ x ] + siz[ x ] - 1 ) return x ;
        if ( id[ root ] >= id[ y ] && id[ root ] <= id[ y ] + siz[ y ] - 1 ) return y ;
        if ( ( lca ( x , root ) == root && lca ( x , y ) == lca ( y , root ) ) || ( lca ( y , root ) == root && lca ( x , y ) == lca ( x , root ) ) ) return root ;
        if ( lca ( x , root ) == lca ( y , root ) ) return lca ( x , y ) ;
        if ( lca ( x , y ) != lca ( x , root ) ) return lca ( x , root ) ;
        return lca ( y , root ) ;
    }
    inline void up2 ( int x , int p ) {
        if ( root == x ) {
            update ( 1 , 1 , n , 1 , n , p ) ;
            return ;
        }
        int tmp = lca ( root , x ) ;
        if ( tmp != x )
            update ( 1 , 1 , n , id[ x ] , id[ x ] + siz[ x ] - 1 , p ) ;
        else {
            int nod = find ( root , x ) ;
            update ( 1 , 1 , n , 1 , n , p ) ;
            update ( 1 , 1 , n , id[ nod ] , id[ nod ] + siz[ nod ] - 1 , -p ) ;
        }
    }
    inline int q2 ( int x ) {
        if ( x == root ) return query ( 1 , 1 , n , 1 , n ) ;
        int tmp = lca ( root , x ) ;
        if ( tmp != x )
            return query ( 1 , 1 , n , id[ x ] , id[ x ] + siz[ x ] - 1 ) ;
        int nod = find ( root , x ) ;
        return query ( 1 , 1 , n , 1 , n ) - query ( 1 , 1 , n , id[ nod ] , id[ nod ] + siz[ nod ] - 1 ) ;
    }
    signed main () {
        n = read () ; m = read () ; root = 1 ;
        for ( int i = 1 ; i <= n ; i ++ )
            a[ i ] = read () ;
        for ( int i = 1 ; i < n ; i ++ ) {
            int x = read () , y = read () ;
            add ( x , y ) ; add ( y , x ) ;
        }
        dfs1 ( 1 , 0 , 1 ) ;
        dfs2 ( 1 , 1 ) ;
        build ( 1 , 1 , n ) ;
        while ( m -- ) {
            int opt = read () ;
            if ( opt == 1 ) root = read () ;
            else if ( opt == 2 ) {
                int x = read () , y = read () , z = read () ;
                up2 ( LCA ( x , y ) , z ) ;
            }
            else {
                int x = read () ;
                printf ( "%lld
    " , q2 ( x ) ) ;
            }
        }
        return 0 ;
    }
    
  • 相关阅读:
    quick-cocos2dx 3.5集成protobuf
    lua和luajit在cocos2dx mac模拟器的简单测试
    cocos2dx-lua手游客户端框架设计
    cocos2dx动画技术选型
    lua中的面向对象
    html 学习
    OC 与js 互相调用
    Carthage的安装和使用
    Bomb后端云使用
    FMDB简单使用
  • 原文地址:https://www.cnblogs.com/hulean/p/13549775.html
Copyright © 2011-2022 走看看