zoukankan      html  css  js  c++  java
  • 贝叶斯学习

    在进行参数估计的时候, 常用到最大似然估计,其形式很简单,对于含有N个样本的训练数据集DN,假设样本独立同分布,分布参数为,则似然概率定义如下:

        

    简单说就是参数为时训练集出现的概率,然后我们根据不同的分布形式求导,得到参数的最有值使得似然概率最大。

    贝叶斯学习过程不同之处在于,一开始并不试图去求解一个最优的参数值,而是假设参数本身符合某个分布,即先验概率p()(例如高斯分布,只要知道均值和方差就能确定下来),利用训练数据集所得到的信息就可以得到参数的条件概率分布p()(条件概率的用途后面揭晓)。

        由贝叶斯公式,我们可以得到:

        再根据前面的独立性假设:

    将公式(2)带入公式(1)中,得到:

        

    再次使用贝叶斯公式,我们发现:

        

    所以:

        

    这里有必要指出的是与参数是独立的,可以这样理解,对于一个已知的分布形式,我们假设了的分布类型:,积分过程中去掉了参数,所以它本身是与独立的,则公式(4)可以简化成:

            

    整个推导过程并没有涉及到参数的具体分布形式,可见公式(5)对于各种分布函数是普遍适用的,该公式体现的是参数的条件概率密度的迭代更新过程,显然,更新的起始点:,没有任何数据的时候,我们所有的就是先验概率。

    最后提一下为什么要求解参数的条件概率密度,在分类问题中,给定属于某一类的训练数据集,对于某一个输入模式,我们要确定类条件概率密度,也就是p(x|DN)

    由贝叶斯公式

        

    前面提过,相互独立,则,所以

        

  • 相关阅读:
    Win32基础知识2 Win32汇编语言003
    Win32基础知识4 Win32汇编语言005
    Win32基础知识4 Win32汇编语言005
    第一个程序 零基础入门学习Delphi01
    Mysql四种通信协议(linux下本地连接的都是socket 其他都是tcp)
    Rhino
    Common Gateway Interface Python CGI编程
    inaccessible
    mysqli_report
    算法功底网站性能瓶颈
  • 原文地址:https://www.cnblogs.com/hustxujinkang/p/4629175.html
Copyright © 2011-2022 走看看