zoukankan      html  css  js  c++  java
  • 【计算机视觉】文字检测与识别资源

    本文写成时主要参考了[1,2], 后面加了一些自己收集的,不过大家都在更新,所以区别不是很大~

    综述

    [2015-PAMI-Overview]Text Detection and Recognition in Imagery: A Survey[paper]

     

    [2014-Front.Comput.Sci-Overview]Scene Text Detection and Recognition: Recent Advances and Future Trends[paper]

     

    自然场景文字检测

    [2018-arxiv]TextBoxes++: ASingle-Shot Oriented Scene Text Detector[paper]

    [2018-arxiv]FOTS: Fast OrientedText Spotting with a Unified Network[paper

    [2018-AAAI] PixelLink: DetectingScene Text via Instance Segmentation[paper]


    [2017-arXiv]Fused Text Segmentation Networks for Multi-oriented Scene Text Detection[paper]


    [2017-arXiv]WeText: Scene Text Detection under Weak Supervision[paper]


    [2017-ICCV]Single Shot Text Detector with Regional Attention[pdf]


    [2017-ICCV]WordSup: Exploiting Word Annotations for Character based Text Detection[paper]


    [2017-arXiv]R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection[paper]


    [2017-CVPR]EAST: An Efficient and Accurate Scene Text Detector [paper][code]


    [2017-arXiv]Cascaded Segmentation-Detection Networks for Word-Level Text Spotting[paper]


    [2017-arXiv]Deep Direct Regression for Multi-Oriented Scene Text Detection[paper]

     

    [2017-CVPR]Detecting oriented text in natural images by linking segments [paper][code]


    [2017-CVPR]Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection[paper]


    [2017-arXiv]Arbitrary-Oriented Scene Text Detection via Rotation Proposals [paper]


    [2017-AAAI]TextBoxes: A Fast Text Detector with a Single Deep Neural Network[paper][code]



    [2016-arXiv]Accurate Text Localization in Natural Image with Cascaded Convolutional TextNetwork [paper]



     

    [2016-arXiv]DeepText : A Unified Framework for Text Proposal Generation and Text Detectionin Natural Images [paper] [data]


     

    [2017-PR]TextProposals: a Text-specific Selective Search Algorithm for Word Spotting in the Wild [paper] [code]


     

    [2016-arXiv] SceneText Detection via Holistic, Multi-Channel Prediction [paper]


     

    [2016-CVPR] CannyText Detector: Fast and Robust Scene Text Localization Algorithm [paper]


     

    [2016-CVPR]Synthetic Data for Text Localisation in Natural Images [paper] [data][code]


     

    [2016-ECCV]Detecting Text in Natural Image with Connectionist Text Proposal Network[paper][demo][code]


    [2016-TIP]Text-Attentional Convolutional Neural Networks for Scene Text Detection [paper]



     

    [2016-IJDAR]TextCatcher: a method to detect curved and challenging text in natural scenes[paper]


     

    [2016-CVPR]Multi-oriented text detection with fully convolutional networks [paper]


     

    [2015-TPRMI]Real-time Lexicon-free Scene Text Localization and Recognition[paper]


     

    [2015-CVPR]Symmetry-Based Text Line Detection in Natural Scenes[paper][code]


     

    [2015-ICCV]FASText: Efficient unconstrained scene text detector[paper][code]

     


     

    [2015-D.PhilThesis] Deep Learning for Text Spotting [paper]

     

    [2015 ICDAR]Object Proposals for Text Extraction in the Wild [paper] [code]


     

    [2014-ECCV] Deep Features for Text Spotting [paper] [code] [model] [GitXiv]


     

    [2014-TPAMI] Word Spotting and Recognition with Embedded Attributes [paper] [homepage] [code]


     

    [2014-TPRMI]Robust Text Detection in Natural Scene Images[paper]


     

    [2014-ECCV] Robust Scene Text Detection with Convolution Neural Network Induced MSER Trees [paper]


     

    [2013-ICCV] Photo OCR: Reading Text in Uncontrolled Conditions[paper]


    [2012-CVPR]Real-time scene text localization and recognition[paper][code]


     

    [2010-CVPR]Detecting Text in Natural Scenes with Stroke Width Transform [paper] [code]


     

    自然场景文字识别


    [2017-arXiv]AdaDNNs: Adaptive Ensemble of Deep Neural Networks for Scene Text Recognition [paper]

     

    [2017-arXiv]STN-OCR: A single Neural Network for Text Detection and Text Recognition[paper][code]

     

    [2017-arXiv]Auto-Encoder Guided GAN for Chinese Calligraphy Synthesis[paper


    [2017-AAAI-网络图片]Detection and Recognition of Text Embedded in Online Images via Neural Context Models[paper][project]


    [2017-arvix 文档识别] Full-Page Text Recognition : Learning Where to Start and When to Stop[paper]


    [2016-AAAI]Reading Scene Text in Deep Convolutional Sequences [paper]


     

    [2016-IJCV]Reading Text in the Wild with Convolutional Neural Networks [paper] [demo] [homepage]


     

    [2016-CVPR]Recursive Recurrent Nets with Attention Modeling for OCR in the Wild [paper]


     

    [2016-CVPR] Robust Scene Text Recognition with Automatic Rectification [paper]


     

    [2016-NIPs] Generative Shape Models: Joint Text Recognition and Segmentation with Very Little Training Data[paper]



    [2015-CoRR] AnEnd-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition [paper] [code]


     

    [2015-ICDAR]Automatic Script Identification in the Wild[paper]


     


     

    [2015-ICLR] Deep structured output learning for unconstrained text recognition [paper]


     

    [2014-NIPS]Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition [paperhomepage] [model]


     


     

    [2014-TIP] A Unified Framework for Multi-Oriented Text Detection and Recognition [paper]


     

    [2012-ICPR]End-to-End Text Recognition with Convolutional Neural Networks [paper] [code] [SVHN Dataset]


     


     

    数据集


    Total-Text 2017

    1555 images,11459 text instances, includes curved text

    COCO-Text (ComputerVision Group, Cornell) 2016

    63,686images, 173,589 text instances, 3 fine-grained text attributes.

    Task:text location and recognition

    COCO-Text API

    Synthetic Data for Text Localisation in Natural Image (VGG)2016

             800k thousand images

             8 million synthetic word instances

             download

    Synthetic Word Dataset (Oxford, VGG) 2014

    9million images covering 90k English words

    Task:text recognition, segmentation

    download

    IIIT 5K-Words 2012

    5000images from Scene Texts and born-digital (2k training and 3k testing images)

    Eachimage is a cropped word image of scene text with case-insensitive labels

    Task:text recognition

    download

    StanfordSynth(Stanford, AI Group) 2012

    Smallsingle-character images of 62 characters (0-9, a-z, A-Z)

    Task:text recognition

    download

    MSRA Text Detection 500 Database(MSRA-TD500) 2012

    500 natural images(resolutions of the images vary from 1296x864 to 1920x1280)

    Chinese,English or mixture of both

    Task:text detection

    Street View Text (SVT) 2010

    350 high resolution images (average size 1260 × 860) (100 images for training and 250 images for testing)

    Onlyword level bounding boxes are provided with case-insensitive labels

    Task:text location

    KAIST Scene_Text Database 2010

    3000images of indoor and outdoor scenes containing text

    Korean,English (Number), and Mixed (Korean + English + Number)

    Task:text location, segmentation and recognition

    Chars74k 2009

    Over74K images from natural images, as well as a set of synthetically generatedcharacters

    Smallsingle-character images of 62 characters (0-9, a-z, A-Z)

    Task:text recognition

    ICDARBenchmark Datasets

    Dataset

    Discription

    Competition Paper

    ICDAR 2015

    1000 training images and 500 testing images

    paper 

    ICDAR 2013

    229 training images and 233 testing images

    paper 

    ICDAR 2011

    229 training images and 255 testing images

    paper 

    ICDAR 2005

    1001 training images and 489 testing images

    paper 

    ICDAR 2003

    181 training images and 251 testing images(word level and character level)

    paper 

     

    开源库

     

    Tesseract: c++ based tools for documents analysis and OCR,support 60+ languages [code]

     

    Ocropy: Python-based tools for document analysis and OCR [code]

     

    CLSTM : A small C++ implementation of LSTM networks,focused on OCR [code]

     

    Convolutional Recurrent Neural Network,Torch7 based [code]

     

    Attention-OCR: Visual Attention based OCR [code]

     

    Umaru: An OCR-system based on torch using the technique of LSTM/GRU-RNN, CTC and referred to the works of rnnlib and clstm [code]

     

     

    其他

     

    DeepFont:Identify Your Font from An Image[paper]

     

    Writer-independent Feature Learning for Offline Signature Verification using Deep Convolutional Neural Networks[paper]

     

    End-to-End Interpretation of the French Street Name Signs Dataset [paper] [code]

     

    Extracting text from an image using Ocropus [blog]

     

    手写字识别

    [2016-arXiv]Drawingand Recognizing Chinese Characters with Recurrent Neural Network [paper]

     

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition [paper]

     

    Stroke Sequence-Dependent Deep Convolutional Neural Network for Online Handwritten Chinese Character Recognition [paper]

     

    High Performance Offline Handwritten Chinese Character Recognition Using GoogLeNet and Directional Feature Maps [paper] [github]

     

    DeepHCCR:Offline Handwritten Chinese Character Recognition based on GoogLeNet and AlexNet (With CaffeModel) [code]

     

    如何用卷积神经网络CNN识别手写数字集?[blog][blog1][blog2] [blog4] [blog5] [code6]

     

    Scan,Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTMAttention [paper]

     

    MLPaint:the Real-Time Handwritten Digit Recognizer [blog][code][demo]

     

    caffe-ocr: OCR with caffe deep learning framework [code] (单字分类器)

     

    牌照等识别


    ReadingCar License Plates Using Deep Convolutional Neural Networks and LSTMs  [paper]

     

    Numberplate recognition with Tensorflow [blog] [code]

     

    end-to-end-for-plate-recognition[code]

     

    ApplyingOCR Technology for Receipt Recognition[blog][mirror]

     

    破解验证码


    [2017-Arvix]Using Synthetic Data to Train NeuralNetworks is Model-Based Reasoning[paper]


    Using deep learning to break a Captcha system [blog] [code]

     

    Breakingreddit captcha with 96% accuracy [blog] [code]

     

    I'mnot a human: Breaking the Google reCAPTCHA [paper]

     

    NeuralNet CAPTCHA Cracker [slides] [code] [demo]

     

    Recurrentneural networks for decoding CAPTCHAS [blog] [code] [demo]

     

    Readingirctc captchas with 95% accuracy using deep learning [code]

     

    端到端的OCR:基于CNN的实现 [blog]

     

    IAm Robot: (Deep) Learning to Break Semantic Image CAPTCHAs [paper]

     

    参考


    [1]http://handong1587.github.io/deep_learning/2015/10/09/ocr.html

    [2]https://github.com/chongyangtao/Awesome-Scene-Text-Recognition

  • 相关阅读:
    01点睛Spring MVC 4.1-搭建环境
    18点睛Spring4.1-Meta Annotation
    17点睛Spring4.1-@Conditional
    16点睛Spring4.1-TaskScheduler
    15点睛Spring4.1-TaskExecutor
    Zabbix4.0.3解决中文乱码
    A10映射方法
    源码安装zabbix_agent4.0.3
    单机部署redis5.0集群环境
    zabbix系列之九——添加钉钉告警
  • 原文地址:https://www.cnblogs.com/huty/p/8516960.html
Copyright © 2011-2022 走看看