zoukankan      html  css  js  c++  java
  • 【计算机视觉】Object Proposal之BING++

    本文是对 BING 算法的升级,主要是在快的同时保持定位精度 
    两个 + 分别对应: edge-based recursive boxes as one “+”, and MTSE-based superpixel merging as the other “+”

    Object Detection Recall (DR):which is the ratio of the number of correctly detected objects and the total number of objects in the dataset

    Proposal Localization Quality measured in terms of average best overlap (ABO)

    mean average best overlap (MABO) 
    这里写图片描述

    Key insight: 我们注意到好的候选区域框是刚刚包含物体,edge 特征可以用于检测物体边缘

    这里写图片描述

    2 Problems in BING 
    poor proposal localization quality

    3 Our Solution: BING++ 
    (1) We take proposals from BING as input. 
    (2) We then recursively update current bounding boxes based on their current locations and surrounding edge points to form new bounding boxes. This process is recursed until we find 
    (3) We finally apply fast super-pixel merging techniques to further refine the output bounding boxes of (2) and output final object proposals

    算法流程: 
    这里写图片描述

    结果对比: 
    这里写图片描述

    这里写图片描述

    这里写图片描述

    这里写图片描述

  • 相关阅读:
    8.20Java之反射机制的基本概念
    8.18Go语言之字符串
    Debug
    Feign
    Nacos
    SpringCloud Alibaba
    SpringCloud
    Maven
    Maven
    Jenkins
  • 原文地址:https://www.cnblogs.com/huty/p/8517490.html
Copyright © 2011-2022 走看看