现在我正在利用imagenet进行finetune训练,待训练好模型,下一步就是利用模型进行分类。故转载一些较有效的相关博客。
博客来源:http://www.cnblogs.com/denny402/p/5111018.html
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序实际上是一样的。
开发caffe的贾大牛团队,利用imagenet图片和caffenet模型训练好了一个caffemodel, 供大家下载。要进行图片的分类,这个caffemodel是最好不过的了。所以,不管是用c++来进行分类,还是用python接口来分类,我们都应该准备这样三个文件:
1、caffemodel文件。
可以直接在浏览器里输入地址下载,也可以运行脚本文件下载。下载地址为:http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
文件名称为:bvlc_reference_caffenet.caffemodel,文件大小为230M左右,为了代码的统一,将这个caffemodel文件下载到caffe根目录下的 models/bvlc_reference_caffenet/ 文件夹下面。也可以运行脚本文件进行下载:
# sudo ./scripts/download_model_binary.py models/bvlc_reference_caffenet
有了caffemodel文件,就需要对应的均值文件,在测试阶段,需要把测试数据减去均值。这个文件我们用脚本来下载,在caffe根目录下执行:
# sudo sh ./data/ilsvrc12/get_ilsvrc_aux.sh
3、synset_words.txt文件
在调用脚本文件下载均值的时候,这个文件也一并下载好了。里面放的是1000个类的名称。
数据准备好了,我们就可以开始分类了,我们给大家提供两个版本的分类方法:
一、c++方法
在caffe根目录下的 examples/cpp-classification/ 文件夹下面,有个classification.cpp文件,就是用来分类的。当然编译后,放在/build/examples/cpp_classification/ 下面
我们就直接运行命令:
# sudo ./build/examples/cpp_classification/classification.bin
models/bvlc_reference_caffenet/deploy.prototxt
models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt
examples/images/cat.jpg
运行成功后,输出top-5结果:
---------- Prediction for examples/images/cat.jpg ----------
0.3134 - "n02123045 tabby, tabby cat"
0.2380 - "n02123159 tiger cat"
0.1235 - "n02124075 Egyptian cat"
0.1003 - "n02119022 red fox, Vulpes vulpes"
0.0715 - "n02127052 lynx, catamount"
即有0.3134的概率为tabby cat, 有0.2380的概率为tiger cat ......
二、python方法
python接口可以使用jupyter notebook来进行可视化操作,因此推荐使用这种方法。
在这里我就不用可视化了,编写一个py文件,命名为py-classify.py
281 n02123045 tabby, tabby cat
282 n02123159 tiger cat
285 n02124075 Egyptian cat
277 n02119022 red fox, Vulpes vulpes
287 n02127052 lynx, catamount
下面是我自己的成功测试,图片除了测试caffe自带,还测试了从Pascal VOC下载的一些数据。下面贴出其中一组结果:
图片
结果
结果准确到让我惊讶,我以为只能分类为dog,没想到还出现了golden retriever这样的结果 ,艾玛以为误分类了,一搜索,原来是金毛寻回犬,又称金毛猎犬。不得不佩服imagenet包含的数据量之大之全~
还可以切换到GPU模式下进行测试:
看看这个分类花了多久,和GPU模式做一个比较
1 loop, best of 3: 1.42 s per loop
即使是50个图的批处理,也只是一会的功夫。那么GPU模式呢?
http://blog.csdn.net/dcxhun3/article/details/52021296