python的变量及其存储
高级语言中 变量的本质:采用引用语义定义方式,对内存及其地址的抽象
Python 一切接对象
变量存储特点:存储变量值所在内存地址,不是变量值本身
引用语义:在python中,变量保存的是对象(值)的引用,我们称为引用语义。采用这种方式,变量所需的存储空间大小一致,因为变量只是保存了一个引用。也被称为对象语义和指针语义。
值语义:有些语言采用的不是这种方式,它们把变量的值直接保存在变量的存储区里,这种方式被我们称为值语义,例如C语言,采用这种存储方式,每一个变量在内存中所占的空间就要根据变量实际的大小而定,无法固定下来。
值语义和引用语义的区别:
值语义: 死的、 傻的、 简单的、 具体的、 可复制的
引用语义: 活的、 聪明的、 复杂的、 抽象的、 不可复制的
python中变量存储与C语言中变量存储区别
各基本数据类型的地址存储及改变情况
数据类型包括:bool、int、long、float、str、set、list、tuple、dict。分为复杂数据结构和简单的数据类型
如果一个数据类型,可将其他的数据类型作为自己的元素,我就认为这是一种数据结构。
数据结构的分类有很多种,但在Python中常用的三种结构:只有集合、序列和映射。对应python中的set、list(tuple、str)、dict;常用的数据类型有int、long、float、bool、str等类型。(其中,str类型比较特别,因为从C语言的角度来说,str其实是一个char的集合,但是这与本文的关联不大,所以我们暂时不谈这个问题)
注意:Python的 三种 数据结构:set,dict ,list
python 是引用语义,数据结构存储的基本数据类型,只是存储的数据类型其地址。
1.数据类型重新初始化对python语义引用的影响
变量的每一次初始化,都开辟了一个新的空间,将新内容的地址赋值给变量。对于下图来说,我们重复的给str1赋值,其实在内存中的变化如下右图:
2.数据结构内部元素变化重对python语义引用的影响
对于复杂的数据类型来说,改变其内部的值对于变量的影响:
当对列表中元素增删改的操作,不会影响到列表本身对于整个列表地址的,只改变其内部元素的地址引用。列表重新初始化(赋值)的时候,就给lst1这个变量重新赋予了一个地址,覆盖了原本列表的地址,这个时候,lst1列表的内存id就发生了改变。上面这个道理用在所有复杂的数据类型中都是一样的。
变量赋值
str的赋值
str1的再次初始化(赋值)会导致内存地址的改变,从上图的结果我们可以看出修改了str1之后,被赋值的str2从内存地址到值都没有受到影响。
看内存中的变化,起始的赋值操作让str1和str2变量都存储了‘hello world’所在的地址,重新对str1初始化,使str1中存储的地址发生了改变,指向了新建的值,此时str2变量存储的内存地址并未改变,所以不受影响。
复杂的数据结构中的赋值
刚刚我们看了简单数据类型的赋值,现在来看复杂数据结构变化对应内存的影响。
上图对列表的增加修改操作,没有改变列表的内存地址,lst1和lst2都发生了变化。
对照内存图我们不难看出,在列表中添加新值时,列表中又多存储了一个新元素的地址,而列表本身的地址没有变化,所以lst1和lst2的id均没有改变并且都被添加了一个新的元素。
简单的比喻一下,我们出去吃饭,lst1和lst2就像是同桌吃饭的两个人,两个人公用一张桌子,只要桌子不变,桌子上的菜发生了变化两个人是共同感受的。
浅拷贝
看上面两张图,我们加入左图表示的是一个列表sourcelist,sourcelist = ['str1','str2','str3','str4','str5',['str1','str2','str3','str4','str5']];
右图在原有的基础上多出了一个浅拷贝的copylist,copylist = ['str1','str2','str3','str4','str5',['str1','str2','str3','str4','str5']];
sourcelist和copylist表面上看起来一模一样,但是实际上在内存中已经生成了一个新列表,copy了sourceLst,获得了一个新列表,存储了5个字符串和一个列表所在内存的地址。
我们看下面分别对两个列表进行的操作,红色的框框里面是变量初始化,初始化了上面的两个列表;我们可以分别对这两个列表进行操作,例如插入一个值,我们会发现什么呢?如下所示:
从上面的代码我们可以看出,对于sourceLst和copyLst列表添加一个元素,这两个列表好像是独立的一样都分别发生了变化,但是当我修改lst的时候,这两个列表都发生了变化,这是为什么呢?我们就来看一张内存中的变化图:
我们可以知道sourceLst和copyLst列表中都存储了一坨地址,当我们修改了sourceLst1的元素时,相当于用'sourceChange'的地址替换了原来'str1'的地址,所以sourceLst的第一个元素发生了变化。而copyLst还是存储了str1的地址,所以copyLst不会发生改变。
当sourceLst列表发生变化,copyLst中存储的lst内存地址没有改变,所以当lst发生改变的时候,sourceLst和copyLst两个列表就都发生了改变。
这种情况发生在字典套字典、列表套字典、字典套列表,列表套列表,以及各种复杂数据结构的嵌套中,所以当我们的数据类型很复杂的时候,用copy去进行浅拷贝就要非常小心。。。
深拷贝
深拷贝——即python的copy模块提供的另一个deepcopy方法。深拷贝会完全复制原变量相关的所有数据,在内存中生成一套完全一样的内容,在这个过程中我们对这两个变量中的一个进行任意修改都不会影响其他变量。下面我们就来试验一下。
看上面的执行结果,这一次我们不管是对直接对列表进行操作还是对列表内嵌套的其他数据结构操作,都不会产生拷贝的列表受影响的情况。我们再来看看这些变量在内存中的状况:
看了上面的内容,我们就知道了深拷贝的原理。其实深拷贝就是在内存中重新开辟一块空间,不管数据结构多么复杂,只要遇到可能发生改变的数据类型,就重新开辟一块内存空间把内容复制下来,直到最后一层,不再有复杂的数据类型,就保持其原引用。这样,不管数据结构多么的复杂,数据之间的修改都不会相互影响。