zoukankan      html  css  js  c++  java
  • 洛谷P2680 运输计划

    大概就是二分+树上差分...

    题意:给你树上m条路径,你要把一条边权变为0,使最长的路径最短。

    最大的最小,看出二分(事实上我并没有看出来...)

    然后二分k,对于所有大于k的边,树上差分求出最长公共边,然后看是否可以。

    (yy的解法②:边按照长度排序,然后二分。删除最长公共边。据logeadd juru说是三分)

    代码量3.6k,180行,还是有点长的。

      1 #include <cstdio>
      2 #include <algorithm>
      3 #include <cstring>
      4 const int N = 300010;
      5 
      6 inline void read(int &x) {
      7     char c = getchar();
      8     x = 0;
      9     while(c > '9' || c < '0') {
     10         c = getchar();
     11     }
     12     while(c <= '9' && c >= '0') {
     13         x = (x << 3) + (x << 1) + c - 48;
     14         c = getchar();
     15     }
     16     return;
     17 }
     18 
     19 struct Edge {
     20     int v, nex, len;
     21 }edge[N << 1]; int top;
     22 
     23 int e[N], n, m, lm, fa[N][20], d[N], lenth[N]; ///
     24 int l[N], r[N], mid[N], len[N]; /// 路径
     25 bool use[N]; /// 树上差分
     26 int num, large, R, f[N];
     27 
     28 inline void add(int x, int y, int z) {
     29     edge[++top].v = y;
     30     edge[top].len = z;
     31     edge[top].nex = e[x];
     32     e[x] = top;
     33     return;
     34 }
     35 
     36 inline void DFS1(int x, int f) {
     37     fa[x][0] = f;
     38     for(int i = e[x]; i; i = edge[i].nex) {
     39         int y = edge[i].v;
     40         if(y != f) {
     41             lenth[y] = lenth[x] + edge[i].len;
     42             d[y] = d[x] + 1;
     43             DFS1(y, x);
     44         }
     45     }
     46     return;
     47 }
     48 
     49 inline void getlca() {
     50     while((1 << lm) < n) {
     51         lm++;
     52     }
     53     DFS1(1, 0);
     54     for(int i = 1; i <= lm; i++) {
     55         for(int x = 1; x <= n; x++) {
     56             fa[x][i] = fa[fa[x][i - 1]][i - 1];
     57         }
     58     }
     59     return;
     60 }
     61 
     62 inline int lca(int x, int y) {
     63     if(d[x] > d[y]) {
     64         std::swap(x, y);
     65     }
     66     int t = lm;
     67     while(t > -1 && d[y] > d[x]) {
     68         if(d[fa[y][t]] >= d[x]) {
     69             y = fa[y][t];
     70         }
     71         t--;
     72     }
     73     if(x == y) {
     74         return x;
     75     }
     76     t = lm;
     77     while(t > -1 && fa[x][0] != fa[y][0]) {
     78         if(fa[x][t] != fa[y][t]) {
     79             x = fa[x][t];
     80             y = fa[y][t];
     81         }
     82         t--;
     83     }
     84     return fa[x][0];
     85 }
     86 
     87 inline int DFS(int x) {
     88     int cnt = 0;
     89     for(int i = e[x]; i; i = edge[i].nex) {
     90         int y = edge[i].v;
     91         if(y == fa[x][0]) {
     92             continue;
     93         }
     94         int temp = DFS(y);
     95         cnt += temp;
     96         if(temp == num) {
     97             large = std::max(large, edge[i].len);
     98         }
     99     }
    100     cnt += f[x];
    101     return cnt;
    102 }
    103 
    104 inline bool check(int k) {
    105     num = 0;
    106     memset(f, 0, sizeof(f));
    107     for(int i = 1; i <= m; i++) {
    108         bool t = len[i] > k;
    109         use[i] = t;
    110         num += t;
    111         if(t) {
    112             f[l[i]]++;
    113             f[r[i]]++;
    114             f[mid[i]] -= 2;
    115         }
    116     }
    117     large = 0;
    118     DFS(1);
    119     return R - large <= k;
    120 }
    121 
    122 inline int getlong(int i) {
    123     int x = l[i];
    124     int ans = 0;
    125     while(x != mid[i]) {
    126         ans = std::max(ans, lenth[x] - lenth[fa[x][0]]);
    127         x = fa[x][0];
    128     }
    129     x = r[i];
    130     while(x != mid[i]) {
    131         ans = std::max(ans, lenth[x] - lenth[fa[x][0]]);
    132         x = fa[x][0];
    133     }
    134     return ans;
    135 }
    136 
    137 int main() {
    138     scanf("%d%d", &n, &m);
    139     int x, y, z;
    140     for(int i = 1; i < n; i++) {
    141         //scanf("%d%d%d", &x, &y, &z);
    142         read(x);
    143         read(y);
    144         read(z);
    145         add(x, y, z);
    146         add(y, x, z);
    147     }
    148     getlca();
    149     int dr = 0, dl = 0, dm, A = 1;
    150     for(int i = 1; i <= m; i++) {
    151         //scanf("%d%d", &l[i], &r[i]);
    152         read(l[i]);
    153         read(r[i]);
    154         mid[i] = lca(l[i], r[i]);
    155         len[i] = lenth[l[i]] + lenth[r[i]] - 2 * lenth[mid[i]];
    156         if(len[i] > dr) {
    157             dr = len[i];
    158             A = i;
    159         }
    160     }
    161     R = dr;
    162     dl = dr - getlong(A);
    163     if(dl < 0) {
    164         printf("ERROR ");
    165     }
    166     while(dl < dr) {
    167         dm = (dr + dl) / 2;
    168         if(check(dm)) {
    169             //printf("check %d 1 
    ", dm);
    170             dr = dm;
    171         }
    172         else {
    173             //printf("check %d 0 
    ", dm);
    174             dl = dm + 1;
    175         }
    176     }
    177     printf("%d", dr);
    178     return 0;
    179 }
    AC代码
  • 相关阅读:
    刚体
    Unity3D游戏开发之数据持久化PlayerPrefs的使用
    用AudioSource.PlayClipAtPoint播放音效
    按非降序建立n个元素的线性表
    Unity中的Transform.SetParent()API
    带头结点的两个链表La,Lb,将两个链表合并到La中,并且不破坏Lb的结构
    不带头结点的两个链表合并为一个链表
    二叉树的相关操作(c语言)
    关于ajax请求数据,并将数据赋值给全局变量的一些解决方法
    SummerVocation_Leaning--java动态绑定(多态)
  • 原文地址:https://www.cnblogs.com/huyufeifei/p/9622962.html
Copyright © 2011-2022 走看看