zoukankan      html  css  js  c++  java
  • HDU 1850 (尼姆博奕)

    http://acm.hdu.edu.cn/showproblem.php?pid=1850

    这题里说的是尼姆博弈的问题,尼姆博弈说的是三堆,但是他的方法却可以推广到任意堆。

    姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的
    物品,规定每次至少取一个,多者不限,最后取光者得胜。

        这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。

        计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:

    1 =二进制01
    2 =二进制10
    3 =二进制11 (+)
    ———————
    0 =二进制00 (注意不进位)

        对于奇异局势(0,n,n)也一样,结果也是0。

        任何奇异局势(a,b,c)都有a(+)b(+)c =0。

    如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

        例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。

        例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品
    就形成了奇异局势(55,81,102)。

        例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,4
    5,48)。

    #include<stdio.h>
    int main()
    {
        int x,m,a[110],i,ans;
        while(scanf("%d",&m),m)
        {
             x=ans=0;
             for(i=0;i<m;i++)
             {
                    scanf("%d",&a[i]);
                    x^=a[i];//把所有数都(+)起来,存在x里面 
             }
             for(i=0;i<m;i++)
             ans+=(a[i]>(x^a[i]));//这里把x跟a[i]异或,可以得到出a[i]外所有数异或的结果。如果a[i]-(x^a[i])是正数,说明方法数可以加一 
             printf("%d
    ",ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Android UI中英文自动显示问题
    HTTP通信过程原理
    [转] Protobuf高效结构化数据存储格式
    常用json解析库比较及选择 fastjson & gson
    [转]深入Android内存泄露
    [转]Android 如何有效的解决内存泄漏的问题
    Android View 滚动边界的测量
    Oracle查看表之间的约束
    LINUX学习笔记——LINUX下EXP命令全库备份数据库文件
    LINUX档案权限
  • 原文地址:https://www.cnblogs.com/huzhenbo113/p/3263479.html
Copyright © 2011-2022 走看看