【题目】
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
【analyse】
1.由于对算法时间复杂度要求为O(log n),故采用二分搜索的方法
2.由于需要查找的一个范围区间的数,有两种方式:1.根据二分查找到的第一数,然后左右遍历查找;2.采用递归的方式,查找出范围区间的边界值
【算法】
v1: public int[] searchRange(int[] nums, int target) { int[] result=new int[2]; int begin=-1; int end=-1; int left=0; int right=nums.length-1; int flag=-1; while(left<=right) { int mid=(left+right)/2; if(nums[mid]<target) left=mid+1; else if(nums[mid]>target) right=mid-1; else { flag=mid; break; } } if(flag!=-1) { begin=flag; end=flag; while(begin>0) { if(nums[begin-1]==target) begin--; else break; } while(end<nums.length-1) { if(nums[end+1]==target) end++; else break; } } result[0]=begin; result[1]=end; return result; } v2: public int[] searchRange(int[] nums,int target) { int[] result=new int[2];
result[0]=getBoundRange(nums,0,nums.length-1,target,true);
result[1]=getBoundRange(nums,0,nums.length-1,target,false);
return result; } public int getBoundRange(int[] nums,int left,int right,int target,boolean left) { if(left<=right) { int mid=(left+right)/2; if(nums[mid]==target) { if(left) { if(mid=0||nums[mid-1]<target) return mid; else return getBoundRange(nums,left,mid-1,target,left); }else { if(mid=nums.length-1||nums[mid+1]>target) return mid; else return getBoundRange(nums,mid+1,right,target,left); } }else if(nums[mid]<target) { return getBoundRange(nums,mid+1,right,target,left); }else { return getBoundRange(nums,left,mid-1,target,left); } }else { return -1; } }