zoukankan      html  css  js  c++  java
  • dlib人脸训练和关键点检测

    总述:此例子是根据dlib两个关键的例子

    1.训练:train_shape_predictor_ex.cpp

    2.关键点检测:face_landmark_detection_ex

    相关代码如下:

      1 #include "stdafx.h"
      2 #include <dlib/image_processing.h>
      3 #include <dlib/data_io.h>
      4 #include <iostream>
      5 #include <dlib/image_processing/frontal_face_detector.h>
      6 #include <dlib/image_processing/render_face_detections.h>
      7 #include <dlib/image_processing.h>
      8 #include <dlib/gui_widgets.h>
      9 #include <dlib/image_io.h>
     10 
     11 using namespace dlib;
     12 using namespace std;
     13 
     14 double interocular_distance(
     15     const full_object_detection& det
     16     )
     17 {
     18     dlib::vector<double, 2> l, r;
     19     double cnt = 0;
     20     // Find the center of the left eye by averaging the points around 
     21     // the eye.
     22     for (unsigned long i = 36; i <= 41; ++i)
     23     {
     24         l += det.part(i);
     25         ++cnt;
     26     }
     27     l /= cnt;
     28 
     29     // Find the center of the right eye by averaging the points around 
     30     // the eye.
     31     cnt = 0;
     32     for (unsigned long i = 42; i <= 47; ++i)
     33     {
     34         r += det.part(i);
     35         ++cnt;
     36     }
     37     r /= cnt;
     38 
     39     // Now return the distance between the centers of the eyes
     40     return length(l - r);
     41 }
     42 
     43 std::vector<std::vector<double> > get_interocular_distances(
     44     const std::vector<std::vector<full_object_detection> >& objects
     45     )
     46 {
     47     std::vector<std::vector<double> > temp(objects.size());
     48     for (unsigned long i = 0; i < objects.size(); ++i)
     49     {
     50         for (unsigned long j = 0; j < objects[i].size(); ++j)
     51         {
     52             temp[i].push_back(interocular_distance(objects[i][j]));
     53         }
     54     }
     55     return temp;
     56 }
     57 
     58 //训练函数
     59 void train(){
     60     try
     61     {
     62         //一、preprocessing
     63         //1. 载入训练集,测试集
     64         const std::string faces_directory = "faces";
     65         dlib::array<array2d<unsigned char> > images_train, images_test;
     66         std::vector<std::vector<full_object_detection> > faces_train, faces_test;
     67 
     68         load_image_dataset(images_train, faces_train, faces_directory + "/training_with_face_landmarks.xml");
     69         load_image_dataset(images_test, faces_test, faces_directory + "/testing_with_face_landmarks.xml");
     70 
     71         // 二、training
     72         //1. 定义trainer类型
     73         shape_predictor_trainer trainer;
     74         //设置训练参数
     75         trainer.set_oversampling_amount(300); 
     76         trainer.set_nu(0.05);
     77         trainer.set_tree_depth(2);
     78         trainer.be_verbose();
     79 
     80         // 2. 训练,生成人脸关键点检测器
     81         shape_predictor sp = trainer.train(images_train, faces_train);
     82 
     83 
     84         // 三、测试
     85         cout << "mean training error: " <<
     86             test_shape_predictor(sp, images_train, faces_train, get_interocular_distances(faces_train)) << endl;
     87         cout << "mean testing error:  " <<
     88             test_shape_predictor(sp, images_test, faces_test, get_interocular_distances(faces_test)) << endl;
     89 
     90         // 四、存储
     91         serialize("sp.dat") << sp;
     92     }
     93     catch (exception& e)
     94     {
     95         cout << "
    exception thrown!" << endl;
     96         cout << e.what() << endl;
     97     }
     98 }
     99 
    100 //关键点检测函数
    101 int main(int argc, char** argv)
    102 {
    103      try
    104     {
    105              
    106         frontal_face_detector detector = get_frontal_face_detector();
    107         shape_predictor sp;
    108         //将上一步训练好的sp.dat 载入
    109         deserialize("sp.dat") >> sp;
    110         image_window win, win_faces;
    111            const std::string image = "faces/2007_007763.jpg";
    112         cout << "processing image " << image << endl;
    113         array2d<rgb_pixel> img;
    114         load_image(img, image);
    115             // Make the image larger so we can detect small faces.
    116         pyramid_up(img);
    117 
    118             // Now tell the face detector to give us a list of bounding boxes
    119             // around all the faces in the image.
    120             std::vector<rectangle> dets = detector(img);
    121             cout << "Number of faces detected: " << dets.size() << endl;
    122 
    123             // Now we will go ask the shape_predictor to tell us the pose of
    124             // each face we detected.
    125             std::vector<full_object_detection> shapes;
    126             for (unsigned long j = 0; j < dets.size(); ++j)
    127             {
    128                 full_object_detection shape = sp(img, dets[j]);
    129                 cout << "number of parts: "<< shape.num_parts() << endl;
    130                 cout << "pixel position of first part:  " << shape.part(0) << endl;
    131                 cout << "pixel position of second part: " << shape.part(1) << endl;
    132                 // You get the idea, you can get all the face part locations if
    133                 // you want them.  Here we just store them in shapes so we can
    134                 // put them on the screen.
    135                 shapes.push_back(shape);
    136             }
    137 
    138             // Now let's view our face poses on the screen.
    139             win.clear_overlay();
    140             win.set_image(img);
    141             win.add_overlay(render_face_detections(shapes));
    142 
    143             // We can also extract copies of each face that are cropped, rotated upright,
    144             // and scaled to a standard size as shown here:
    145             dlib::array<array2d<rgb_pixel> > face_chips;
    146             extract_image_chips(img, get_face_chip_details(shapes), face_chips);
    147             win_faces.set_image(tile_images(face_chips));
    148 
    149             cout << "Hit enter to process the next image..." << endl;
    150             cin.get();
    151         
    152     }
    153     catch (exception& e)
    154     {
    155         cout << "
    exception thrown!" << endl;
    156         cout << e.what() << endl;
    157     }
    158 }
  • 相关阅读:
    perl 安装Rex
    salt-stack 客户端运行需要安装python
    Lock wait timeout exceeded
    敏捷BI与数据驱动机制
    MyBatis传入参数为list、数组、map写法
    angular2.js:2 Uncaught ReferenceError: System is not defined
    谈谈企业的数据工作!——企业的数据分析能力金字塔
    SyntaxError: inconsistent use of tabs and spaces in indentation
    Eclipse Save Action功能
    TypeError: unicode strings are not supported, please encode to bytes: 'hu'
  • 原文地址:https://www.cnblogs.com/hxjbc/p/6110175.html
Copyright © 2011-2022 走看看