题目描述 Description
Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson。现
在,刚刚放学回家的Hankson 正在思考一个有趣的问题。
今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数。现
在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公
倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整
数x 满足:
1. x 和a0 的最大公约数是a1;
2. x 和b0 的最小公倍数是b1。
Hankson 的“逆问题”就是求出满足条件的正整数x。但稍加思索之后,他发现这样的
x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的x 的个数。请你帮
助他编程求解这个问题。
输入描述 Input Description
第一行为一个正整数n,表示有n 组输入数据。接下来的n 行每
行一组输入数据,为四个正整数a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入
数据保证a0 能被a1 整除,b1 能被b0 整除。
输出描述 Output Description
每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x,请输出0;
若存在这样的 x,请输出满足条件的x 的个数;
样例输入 Sample Input
2
41 1 96 288
95 1 37 1776
样例输出 Sample Output
6
2
数据范围及提示 Data Size & Hint
【说明】
第一组输入数据,x 可以是9、18、36、72、144、288,共有6 个。
第二组输入数据,x 可以是48、1776,共有2 个。
【数据范围】
对于 50%的数据,保证有1≤a0,a1,b0,b1≤10000 且n≤100。
对于 100%的数据,保证有1≤a0,a1,b0,b1≤2,000,000,000 且n≤2000。
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> using namespace std; int cnt,tot; int a0,a1,b0,b1; int gcd(int a,int b) {return b==0?a:gcd(b,a%b);} bool calc(long long x) { if(x%a1!=0)return 0; return gcd(x/a1,a0/a1)==1&&gcd(b1/b0,b1/x)==1; } int main() { int t; scanf("%d",&t); while(t--) { scanf("%d%d%d%d",&a0,&a1,&b0,&b1); long long ans=0; for(int i=1;i*i<=b1;i++) { if(b1%i==0) { ans+=calc(i); if(b1/i!=i) ans+=calc(b1/i); } } printf("%lld ",ans); } }