zoukankan      html  css  js  c++  java
  • Range Addition

    Assume you have an array of length n initialized with all 0's and are given k update operations.

    Each operation is represented as a triplet: [startIndex, endIndex, inc] which increments each element of subarray A[startIndex ... endIndex](startIndex and endIndex inclusive) with inc.

    Return the modified array after all k operations were executed.

    Example:

    Given:
    
        length = 5,
        updates = [
            [1,  3,  2],
            [2,  4,  3],
            [0,  2, -2]
        ]
    
    Output:
    
        [-2, 0, 3, 5, 3]
    

    Explanation:

    Initial state:
    [ 0, 0, 0, 0, 0 ]
    
    After applying operation [1, 3, 2]:
    [ 0, 2, 2, 2, 0 ]
    
    After applying operation [2, 4, 3]:
    [ 0, 2, 5, 5, 3 ]
    
    After applying operation [0, 2, -2]:
    [-2, 0, 3, 5, 3 ]
    

    Hint:

    1. Thinking of using advanced data structures? You are thinking it too complicated.
    2. For each update operation, do you really need to update all elements between i and j?
    3. Update only the first and end element is sufficient.
    4. The optimal time complexity is O(k + n) and uses O(1) extra space.

    Credits:
    Special thanks to @vinod23 for adding this problem and creating all test cases.

    这道题的提示说了我们肯定不能把范围内的所有数字都更新,而是只更新开头结尾两个数字就行了,那么我们的做法就是在开头坐标startIndex位置加上inc,而在结束位置加1的地方加上-inc,那么根据题目中的例子,我们可以得到一个数组,nums = {-2, 2, 3, 2, -2, -3},然后我们发现对其做累加和就是我们要求的结果result = {-2, 0, 3, 5, 3}

    public class Solution {
        public int[] getModifiedArray(int length, int[][] updates) {
            int[] res = new int [length+1];
            for(int[] update : updates){
                int start = update[0];
                int end = update[1] + 1;
                int value = update[2];
                res[start] = res[start] + value;
                res[end] = res[end] - value;
            }
            
            int[] arr = new int[length];
            arr[0] = res[0];
            for(int i=1;i<length;i++)
            {
                arr[i] = arr[i-1] + res [i];
            }
            return arr;
        }
    }

    reference: http://massivealgorithms.blogspot.com/2016/06/leetcode-370-range-addition.html

  • 相关阅读:
    python并发编程之多进程(实践篇)
    python之网络编程
    python并发编程之协程(实践篇)
    python并发编程之IO模型(实践篇)
    复制命令(ROBOCOPY)
    创建文件命令
    创建文件夹命令
    复制命令(XCOPY)
    进程命令(tasklist)
    目录命令(tree)
  • 原文地址:https://www.cnblogs.com/hygeia/p/5709625.html
Copyright © 2011-2022 走看看