zoukankan      html  css  js  c++  java
  • 【图论补完计划】poj 3522 (最小生成树)

    Slim Span
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 7933   Accepted: 4227

    Description

    Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge eE has its weight w(e).

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


    Figure 5: A graph G and the weights of the edges

    For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


    Figure 6: Examples of the spanning trees of G

    There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    n m  
    a1 b1 w1
       
    am bm wm

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ mn(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

    Sample Input

    4 5
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6
    1 2 10
    1 3 100
    1 4 90
    2 3 20
    2 4 80
    3 4 40
    2 1
    1 2 1
    3 0
    3 1
    1 2 1
    3 3
    1 2 2
    2 3 5
    1 3 6
    5 10
    1 2 110
    1 3 120
    1 4 130
    1 5 120
    2 3 110
    2 4 120
    2 5 130
    3 4 120
    3 5 110
    4 5 120
    5 10
    1 2 9384
    1 3 887
    1 4 2778
    1 5 6916
    2 3 7794
    2 4 8336
    2 5 5387
    3 4 493
    3 5 6650
    4 5 1422
    5 8
    1 2 1
    2 3 100
    3 4 100
    4 5 100
    1 5 50
    2 5 50
    3 5 50
    4 1 150
    0 0

    Sample Output

    1
    20
    0
    -1
    -1
    1
    0
    1686
    50



     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 #include <algorithm>
     5 
     6 using namespace std;
     7 
     8 const int maxn=105;
     9 const int maxm=10005;
    10 const int inf=1e9;
    11 
    12 int par[maxn],Rank[maxn];
    13 
    14 int n,m;
    15 
    16 void init(){
    17     for(int i=1;i<=n;i++){
    18         par[i]=i;
    19         Rank[i]=0;
    20     }
    21 }
    22 
    23 int Find(int x){
    24     if(x==par[x]) return x;
    25     return par[x]=Find(par[x]);
    26 }
    27 
    28 void unite(int x,int y){
    29     x=Find(x);
    30     y=Find(y);
    31     if(x==y) return;
    32     if(Rank[x]<Rank[y]){
    33         par[x]=y;
    34     }
    35     else{
    36         par[y]=x;
    37         if(Rank[x]==Rank[y]) Rank[x]++;
    38     }
    39 }
    40 
    41 bool same(int x,int y){
    42     return Find(x)==Find(y);
    43 }
    44 
    45 struct edge{
    46     int s,t,v;
    47 }E[maxm];
    48 
    49 int ne;
    50 
    51 int cmp(const edge&a,const edge&b){
    52     return a.v<b.v;
    53 }
    54 
    55 void add_edge(int s,int t,int v){
    56     E[ne].s=s;
    57     E[ne].t=t;
    58     E[ne++].v=v;
    59 }
    60 
    61 int kruskal(int s){
    62     int mxe=-1;
    63     int tot=0;
    64     for(int i=s;i<ne;i++){
    65         edge &e=E[i];
    66         if(!same(e.s,e.t)){
    67             unite(e.s,e.t);
    68             tot++;
    69             mxe=e.v;
    70         }
    71     }
    72     if(tot!=n-1) return -1;
    73     return mxe-E[s].v;
    74 }
    75 
    76 int main(){
    77     while(scanf("%d %d",&n,&m)==2&&n){
    78         ne=0;
    79         for(int i=0;i<m;i++){
    80             int s,t,v;
    81             scanf("%d %d %d",&s,&t,&v);
    82             add_edge(s,t,v);
    83             add_edge(t,s,v);
    84         }
    85         sort(E,E+ne,cmp);
    86         int res=inf;
    87         for(int i=0;i<ne;i++){
    88             init();
    89             int tmp=kruskal(i);
    90             if(tmp!=-1) res=min(res,tmp);
    91         }
    92         if(res==inf) printf("-1
    ",res);
    93         else printf("%d
    ",res);
    94     }
    95     return 0;
    96 }
  • 相关阅读:
    MongoDB在windows服务器安装部署及远程连接MongoDB
    react 常用组件
    react component 语法报错解决
    yarn install node-sass(gulp-sass) 安装失败解决方案
    eslint 规则中文注释
    react jsx 代码格式化
    vue sublime 工欲善其事,必先利其器
    jenkins 配置
    nodejs 使用 superagent 与 cheerio 完成简单爬虫
    jQuery DOM对象区别与联系
  • 原文地址:https://www.cnblogs.com/hymscott/p/6498286.html
Copyright © 2011-2022 走看看