zoukankan      html  css  js  c++  java
  • cf div2 234 E

    E. Inna and Binary Logic
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Inna is fed up with jokes about female logic. So she started using binary logic instead.

    Inna has an array of n elements a1[1], a1[2], ..., a1[n]. Girl likes to train in her binary logic, so she does an exercise consisting of nstages: on the first stage Inna writes out all numbers from array a1, on the i-th (i ≥ 2) stage girl writes all elements of array ai, which consists of n - i + 1 integers; the k-th integer of array ai is defined as follows: ai[k] = ai - 1[kAND ai - 1[k + 1]. Here AND is bit-wise binary logical operation.

    Dima decided to check Inna's skill. He asks Inna to change array, perform the exercise and say the sum of all  elements she wrote out during the current exercise.

    Help Inna to answer the questions!

    Input

    The first line contains two integers n and m (1 ≤ n, m ≤ 105) — size of array a1 and number of Dima's questions. Next line contains nintegers a1[1], a1[2], ..., a1[n] (0 ≤ ai ≤ 105) — initial array elements.

    Each of next m lines contains two integers — Dima's question description. Each question consists of two integers pi, vi (1 ≤ pi ≤ n; 0 ≤ vi ≤ 105). For this question Inna should make a1[pi] equals vi, and then perform the exercise. Please, note that changes are saved from question to question.

    Output

    For each question print Inna's answer on a single line.

    Sample test(s)
    input
    3 4
    1 1 1
    1 1
    2 2
    3 2
    1 2
    output
    6
    4
    7
    12


    原来以为要各种优化,谁知道只要直接暴力就可以了,汗!
    首先把这个序列拆成二进制数,一位一位的看。
    对于每个p v ,对于每个二进制位,从 p - 1 往下搜连续的1 的个数, 从 p + 1 往上搜连续的1 的个数,最后代公式
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 
     6 using namespace std;
     7 typedef long long ll;
     8 
     9 #define maxn 100005
    10 
    11 int n,m,p,v;
    12 int a[maxn];
    13 ll ans = 0;
    14 
    15 int main () {
    16    // freopen("sw.in","r",stdin);
    17 
    18     scanf("%d%d",&n,&m);
    19 
    20     for(int i = 1; i <= n; ++i) {
    21             scanf("%d",&a[i]);
    22     }
    23 
    24     for(int dig = 0; dig < 18; ++dig) {
    25             for(int i = 1; i <= n; ++i) {
    26                     if(a[i] >> dig & 1) {
    27                             int j;
    28                             for(j = i; j <= n && ((a[j] >> dig) & 1); ++j ) ;
    29                             ans += (1 << dig) * (ll)(j - i) * (j - i + 1) / 2;
    30                             i = j;
    31                     }
    32 
    33             }
    34 
    35     }
    36 
    37     for(int i = 1; i <= m; ++i) {
    38             scanf("%d%d",&p,&v);
    39             ll l = 0, r = 0;
    40             for(int dig = 0; dig < 18; ++dig) {
    41                     int j;
    42                     for(j = p - 1; ((a[j] >> dig) & 1) && j >= 1; --j);
    43                    // printf(" j = %d
    ",j);
    44                     l = p - 1 - j;
    45                     for(j = p + 1; ((a[j] >> dig) & 1) && j <= n; ++j);
    46                     r = j - (p + 1);
    47                     //printf("dig = %d l = %d r = %d
    ",dig,l,r);
    48                     if((a[p] >> dig & 1) ^ (v >> dig & 1)) {
    49                             ll t = (a[p] >> dig & 1) ? 1 : -1;
    50                                 ans += (1 << dig) * t * (l * (l + 1) / 2 + r * (r + 1) / 2 -
    51                                     (l + r + 2) * (l + r + 1) / 2);
    52                     }
    53             }
    54             a[p] = v;
    55             printf("%I64d
    ",ans);
    56 
    57 
    58 
    59     }
    60     return 0;
    61 }
    View Code
    计算变化的值以修改 ans.


  • 相关阅读:
    Python爬虫3大解析库使用导航
    pyquery解析库的介绍和使用
    BeautifulSoup解析库的介绍和使用
    Xpath解析库的使用
    python爬虫之正则表达式(用在其他地方也可)
    requests的基本使用
    Linux下防范小型cc攻击
    图片素材资源
    postman安装
    edraw快捷键
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3588537.html
Copyright © 2011-2022 走看看