zoukankan      html  css  js  c++  java
  • poj 2763

    Housewife Wind
    Time Limit: 4000MS   Memory Limit: 65536K
    Total Submissions: 5471   Accepted: 1371

    Description

    After their royal wedding, Jiajia and Wind hid away in XX Village, to enjoy their ordinary happy life. People in XX Village lived in beautiful huts. There are some pairs of huts connected by bidirectional roads. We say that huts in the same pair directly connected. XX Village is so special that we can reach any other huts starting from an arbitrary hut. If each road cannot be walked along twice, then the route between every pair is unique. 

    Since Jiajia earned enough money, Wind became a housewife. Their children loved to go to other kids, then make a simple call to Wind: 'Mummy, take me home!' 

    At different times, the time needed to walk along a road may be different. For example, Wind takes 5 minutes on a road normally, but may take 10 minutes if there is a lovely little dog to play with, or take 3 minutes if there is some unknown strange smell surrounding the road. 

    Wind loves her children, so she would like to tell her children the exact time she will spend on the roads. Can you help her? 

    Input

    The first line contains three integers n, q, s. There are n huts in XX Village, q messages to process, and Wind is currently in hut s. n < 100001 , q < 100001. 

    The following n-1 lines each contains three integers a, b and w. That means there is a road directly connecting hut a and b, time required is w. 1<=w<= 10000. 

    The following q lines each is one of the following two types: 

    Message A: 0 u 
    A kid in hut u calls Wind. She should go to hut u from her current position. 
    Message B: 1 i w 
    The time required for i-th road is changed to w. Note that the time change will not happen when Wind is on her way. The changed can only happen when Wind is staying somewhere, waiting to take the next kid. 

    Output

    For each message A, print an integer X, the time required to take the next child.

    Sample Input

    3 3 1
    1 2 1
    2 3 2
    0 2
    1 2 3
    0 3
    

    Sample Output

    1
    3
    

    Source

     
    lca 加树状数组
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 
      6 using namespace std;
      7 
      8 const int MAX_N = 100005;
      9 const int edge = MAX_N * 2;
     10 int N,Q,S;
     11 int first[MAX_N],Next[edge],w[edge],V[edge];
     12 int id[MAX_N],vs[MAX_N * 2],dep[MAX_N * 2];
     13 int d[2 * MAX_N][30],qid[2 * MAX_N][30];
     14 int E[edge],c[MAX_N * 2];
     15 int vis[MAX_N * 2];
     16 int n;
     17 
     18 int lowbit(int x) {
     19         return x & (-x);
     20 }
     21 
     22 int sum(int x) {
     23         int ret = 0;
     24         while(x > 0) {
     25                 ret += c[x];
     26                 x -= lowbit(x);
     27         }
     28         return ret;
     29 }
     30 
     31 void add(int x,int d) {
     32     //printf("x = %d
    ",x);
     33         while(x <= n) {
     34                 c[x] += d;
     35                 x += lowbit(x);
     36         }
     37 }
     38 
     39 void add_edge(int id,int u) {
     40         int e = first[u];
     41         Next[id] = e;
     42         first[u] = id;
     43 }
     44 
     45 int no(int x) {
     46         if(x > N - 1) return x - N + 1;
     47         else return x + N - 1;
     48 }
     49 
     50 void dfs(int u,int fa,int d,int &k,int m) {
     51         id[u] = k;
     52         vs[k] = u;
     53         add(k,w[m]);
     54         vis[m] = 1;
     55         E[m] = k;
     56         dep[k++] = d;
     57         for(int e = first[u]; e != -1; e = Next[e]) {
     58                 if(V[e] != fa) {
     59                         dfs(V[e],u,d + 1,k,e);
     60                         vs[k] = u;
     61                         add(k,-w[e]);
     62                         vis[no(e)] = -1;
     63                         E[no(e)] = k;
     64                         dep[k++] = d;
     65                 }
     66         }
     67 }
     68 
     69 
     70 void RMQ() {
     71         for(int i = 1; i <= n; ++i) {
     72                 d[i][0] = dep[i];
     73                 qid[i][0] = i;
     74         }
     75         for(int j = 1; (1 << j) <= n; ++j) {
     76                 for(int i = 1; i + (1 << j) - 1 <= n; ++i) {
     77                         if(d[i][j - 1] > d[i + (1 << (j - 1))][j - 1]) {
     78                                 d[i][j] = d[i + (1 << (j - 1))][j - 1];
     79                                 qid[i][j] = qid[i + (1 << (j - 1))][j - 1];
     80                         } else {
     81                                 d[i][j] = d[i][j - 1];
     82                                 qid[i][j] = qid[i][j - 1];
     83                         }
     84                 }
     85         }
     86 }
     87 
     88 int query(int L,int R) {
     89         int k = 0;
     90         //printf("L = %d R = %d
    ",L,R);
     91         while( (1 << (k + 1)) < (R - L + 1) ) ++k;
     92         //printf("k = %d
    ",k);
     93         //printf("d= %d %d
    ",d[L][1 << k] , d[R - (1 << k) + 1][1 << k]);
     94         return d[L][k] < d[R - (1 << k) + 1][k] ?
     95                qid[L][k] : qid[R - (1 << k) + 1][k];
     96 
     97 }
     98 
     99 int main()
    100 {
    101    // freopen("sw.in","r",stdin);
    102     scanf("%d%d%d",&N,&Q,&S);
    103     n = 2 * N - 1;
    104     for(int i = 1; i <= N; ++i) first[i] = -1;
    105     for(int i = 1; i <= N - 1; ++i) {
    106             int u;
    107             scanf("%d%d%d",&u,&V[i],&w[i]);
    108             V[i + N - 1] = u;
    109             w[i + N - 1] = w[i];
    110             add_edge(i,u);
    111             add_edge(i + N - 1,V[i]);
    112     }
    113 
    114     int k = 1;
    115     dfs(S,-1,0,k,0);
    116     RMQ();
    117     //printf("k = %d
    ",k);
    118 
    119     int now = S;
    120     for(int i = 1; i <= Q; ++i) {
    121             int ch,v,id1;
    122             scanf("%d",&ch);
    123             if(ch == 0) {
    124                     scanf("%d",&v);
    125                    // printf("now = %d
    ",now);
    126                     int p = vs[ query(min(id[now],id[v]),max(id[now],id[v])) ];
    127                     printf("%d
    ",sum(id[now] ) + sum( id[v] ) - 2 * sum( id[p] ));
    128                     now = v;
    129             } else {
    130                     scanf("%d%d",&id1,&v);
    131                     int d = v - w[id1];
    132                     w[id1] = v;
    133                     add(E[id1],vis[id1] * d);
    134                     add(E[id1 + N - 1],vis[id1 + N - 1] * d);
    135             }
    136     }
    137 
    138 
    139     return 0;
    140 }
    View Code
  • 相关阅读:
    采用重写tostring方法使ComboBox显示对象属性
    JavaScript中正则表达式test()、exec()、match() 方法
    高级软件工程实践总结作业
    用户使用调查报告
    Beta阶段置顶集合
    Beta冲刺阶段总结随笔
    Beta冲刺Day7
    Beta冲刺Day6
    Beta冲刺Day5
    Beta冲刺Day4
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3710642.html
Copyright © 2011-2022 走看看