zoukankan      html  css  js  c++  java
  • 代码学习

    代码学习

    AI艺术鉴赏挑战赛的亚军、季军代码学习

    基于Resnext50,eff-b3

    • 这个网络主要是基于Resnext50和efficientnet-b3 网络
    • 网络提供了很多可选择参数,可以很方便的调整网络的一下基本参数配置
    • 最后就是有一个投票部分,来做一个选择

    网络部分(主要是包含一些相关功能模块的实现,这里也做一下记录)

    def forward(self, x):
        if self.model_name == 'eff-b3':
            feat = self.backbone.extract_features(x)
        else:
            feat = self.backbone(x)
        
        feat = self.pool(feat)
        se = self.se(feat).view(feat.size(0), -1)
        feat_flat = feat.view(feat.size(0), -1)
        feat_flat = self.relu(self.hidden(feat_flat) * se)
    
        out = self.metric(feat_flat)
        return out
    
    class SELayer(nn.Module):
        def __init__(self, channel, reduction=16):
            super(SELayer, self).__init__()
            self.avg_pool = nn.AdaptiveAvgPool2d(1)
            self.fc = nn.Sequential(
                nn.Linear(channel, channel // reduction, bias=False),
                nn.ReLU(inplace=True),
                nn.Linear(channel // reduction, channel, bias=False),
                nn.Sigmoid()
            )
    
        def forward(self, x):
            b, c, _, _ = x.size()
            y = self.avg_pool(x).view(b, c)
            y = self.fc(y).view(b, c, 1, 1)
            return y
    
    
    class AdaptiveConcatPool2d(nn.Module):
        def __init__(self, sz=(1,1)):
            super().__init__()
            self.ap = nn.AdaptiveAvgPool2d(sz)
            self.mp = nn.AdaptiveMaxPool2d(sz)
            
        def forward(self, x):
            return torch.cat([self.mp(x), self.ap(x)], 1)
    
    
    class GeneralizedMeanPooling(nn.Module):
        def __init__(self, norm=3, output_size=1, eps=1e-6):
            super().__init__()
            assert norm > 0
            self.p = float(norm)
            self.output_size = output_size
            self.eps = eps
    
        def forward(self, x):
            x = x.clamp(min=self.eps).pow(self.p)
            
            return torch.nn.functional.adaptive_avg_pool2d(x, self.output_size).pow(1. / self.p)
    
        def __repr__(self):
            return self.__class__.__name__ + '(' 
                   + str(self.p) + ', ' 
                   + 'output_size=' + str(self.output_size) + ')'
    
    
    
    class BaseModel(nn.Module):
        def __init__(self, model_name, num_classes, pretrained=True, pool_type='max', down=True, metric='linear'):
            super().__init__()
            self.model_name = model_name
            
            if model_name == 'eff-b3':
                backbone = EfficientNet.from_pretrained('efficientnet-b3')
                plane = 1536
            elif model_name == 'resnext50':
                backbone = nn.Sequential(*list(models.resnext50_32x4d(pretrained=pretrained).children())[:-2])
                plane = 2048
            else:
                backbone = None
                plane = None
    
            self.backbone = backbone
            
            if pool_type == 'avg':
                self.pool = nn.AdaptiveAvgPool2d((1, 1))
            elif pool_type == 'cat':
                self.pool = AdaptiveConcatPool2d()
                down = 1
            elif pool_type == 'max':
                self.pool = nn.AdaptiveMaxPool2d((1, 1))
            elif pool_type == 'gem':
                self.pool = GeneralizedMeanPooling()
            else:
                self.pool = None
            
            if down:
                if pool_type == 'cat':
                    self.down = nn.Sequential(
                        nn.Linear(plane * 2, plane),
                        nn.BatchNorm1d(plane),
                        nn.Dropout(0.2),
                        nn.ReLU(True)
                        )
                else:
                    self.down = nn.Sequential(
                        nn.Linear(plane, plane),
                        nn.BatchNorm1d(plane),
                        nn.Dropout(0.2),
                        nn.ReLU(True)
                    )
            else:
                self.down = nn.Identity()
            
            self.se = SELayer(plane)
            self.hidden = nn.Linear(plane, plane)
            self.relu = nn.ReLU(True)
            
            if metric == 'linear':
                self.metric = nn.Linear(plane, num_classes)
            elif metric == 'am':
                self.metric = AddMarginProduct(plane, num_classes)
            else:
                self.metric = None
    

    在网络训练之前,作者做了一个计数操作,把train、val的数据记录在了txt文件中,并且做了一个计数操作。同时网络的训练和测试的收敛情况也做了记录,并且最终模型保存的时候也是做了一个准确率的记录。

    def plot(d, mode='train', best_acc_=None):
        import matplotlib.pyplot as plt
        plt.figure(figsize=(10, 4))
        plt.suptitle('%s_curve' % mode)
        plt.subplots_adjust(wspace=0.2, hspace=0.2)
        epochs = len(d['acc'])
    
        plt.subplot(1, 2, 1)
        plt.plot(np.arange(epochs), d['loss'], label='loss')
        plt.xlabel('epoch')
        plt.ylabel('loss')
        plt.legend(loc='upper left')
    
        plt.subplot(1, 2, 2)
        plt.plot(np.arange(epochs), d['acc'], label='acc')
        if best_acc_ is not None:
            plt.scatter(best_acc_[0], best_acc_[1], c='r')
        plt.xlabel('epoch')
        plt.ylabel('acc')
        plt.legend(loc='upper left')
    
        plt.savefig(os.path.join(savepath, '%s.jpg' % mode), bbox_inches='tight')
        plt.close()
    

    加载数据集和数据增强部分

    trans = {
            'train':
                transforms.Compose([
                    transforms.RandomHorizontalFlip(),
                    # transforms.RandomVerticalFlip(),
                    # transforms.ColorJitter(brightness=0.126, saturation=0.5),
                    # transforms.RandomAffine(degrees=30, translate=(0.2, 0.2), fillcolor=0, scale=(0.8, 1.2), shear=None),
                    transforms.Resize((int(size / 0.875), int(size / 0.875))),
                    transforms.RandomCrop((size, size)),
                    transforms.ToTensor(),
                    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
                    transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3))
                ]),
            'val':
                transforms.Compose([
                    transforms.Resize((int(size / 0.875), int(size / 0.875))),
                    transforms.CenterCrop((size, size)),
                    transforms.ToTensor(),
                    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                ])
            }
    class Dataset(dataset.Dataset):
        def __init__(self, mode):
            assert mode in ['train', 'val']
            txt = 'data/%s.txt' % mode
    
            fpath = []
            labels = []
            with open(txt, 'r')as f:
                for i in f.readlines():
                    fp, label = i.strip().split(',')
                    fpath.append(fp)
                    labels.append(int(label))
    
            self.fpath = fpath
            self.labels = labels
            self.mode = mode
            self.trans = trans[mode]
            
        def __getitem__(self, index):
            fp = self.fpath[index]
            label = self.labels[index]
            img = Image.open(fp).convert('RGB')
            if self.trans is not None:
                img = self.trans(img)
    
            return img, label
    
        def __len__(self):
            return len(self.labels)
    
    # dataloader
    trainset = Dataset(mode='train')
    valset = Dataset(mode='val')
    
    trainloader = DataLoader(dataset=trainset, batch_size=args.batch_size, shuffle=True, 
                                num_workers=args.num_workers, pin_memory=True, drop_last=True)
    
    valloader = DataLoader(dataset=valset, batch_size=128, shuffle=False, num_workers=args.num_workers, 
                            pin_memory=True)
    

    网络的训练和测试部分代码都比较常规,所以记录一下别的部分的相关操作

    # model
    model = BaseModel(model_name=args.model_name, num_classes=args.num_classes, pretrained=args.pretrained, pool_type=args.pool_type, down=args.down, metric=args.metric)
    if args.resume:
        state = torch.load(args.resume)
        print('best_epoch:{}, best_acc:{}'.format(state['epoch'], state['acc']))
        model.load_state_dict(state['net'])
    
    if torch.cuda.device_count() > 1 and args.multi_gpus:
        print('use multi-gpus...')
        os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        torch.distributed.init_process_group(backend="nccl", init_method='tcp://localhost:23456', rank=0, world_size=1)
        model = model.to(device)
        model = nn.parallel.DistributedDataParallel(model)
    else:
        device = ('cuda:%d'%args.gpu if torch.cuda.is_available() else 'cpu')
        model = model.to(device)
    print('device:', device)
    
    # optim
    optimizer = torch.optim.SGD(
            [{'params': filter(lambda p: p.requires_grad, model.parameters()), 'lr': args.lr}],
            weight_decay=args.weight_decay, momentum=args.momentum)
    
    print('init_lr={}, weight_decay={}, momentum={}'.format(args.lr, args.weight_decay, args.momentum))
    
    if args.scheduler == 'step':
        scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_step, gamma=args.lr_gamma, last_epoch=-1)
    elif args.scheduler == 'multi':
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[150, 225], gamma=args.lr_gamma, last_epoch=-1)
    elif args.scheduler == 'cos':
        warm_up_step = 10
        lambda_ = lambda epoch: (epoch + 1) / warm_up_step if epoch < warm_up_step else 0.5 * (
                    np.cos((epoch - warm_up_step) / (args.total_epoch - warm_up_step) * np.pi) + 1)
        scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda_)
    

    最后的投票部分

    files = ['1.csv', '2.csv', '3.csv', '4.csv']
    weights = [1, 1, 1, 1]
    
    results = np.zeros((800, 6))
    for file, w in zip(files, weights):
        print(w)
        df = pd.read_csv(file, header=None).values
        for x, y in df:
            # print(x, y)
            results[x, y] += w
            # break
    
    print(results[0])
    
    submit = {
        'name': np.arange(800).tolist(),
        'pred': np.argmax(results, axis=1).tolist()
        }
    
    for k, v in submit.items():
        print(k, v)
    
    df = pd.DataFrame(submit)
    df.to_csv('vote.csv', header=False, index=False)
    

    ResNet200

    不知道是研习社的问题还是作者代码问题,这个代码的排版就不太对,,main函数有一部分被放到了最后面,而且感觉代码不太完整,,代码部分还是比较常规的

    有一部分是写了个类来计算准确率等

    class AverageMeter(object):
        """Computes and stores the average and current value"""
    
        def __init__(self):
            self.reset()
    
        def reset(self):
            self.val = 0
            self.avg = 0
            self.sum = 0
            self.count = 0
    
        def update(self, val, n=1):
            self.val = val
            self.sum += val * n
            self.count += n
            self.avg = self.sum / self.count
    
  • 相关阅读:
    Ubuntu18.04连不上网的解决办法
    springboot 踩雷 invalid bound statement (not found): com.atguigu.springboot.mapper.employeemapper.getempbyid
    IDEA的pom文件总是出现Failed to read artifact descriptor forXXX:jar:unknow的解决方法
    IDEA快捷键记录
    在ubuntu18.04中使用chorme浏览器,发现鼠标向下滑动速度真的很慢!更改鼠标滚动速度解决!!
    使用docker拉取镜像时,一直报错get https://registry-1.docker.io/v2/: net/http: tls handshake timeout
    启动django服务器访问admin站点时,django服务器自动关闭的问题解决方案。
    mathtype 6.9 setup cannot continue as an installation of mathtype 7 has be detected。彻底删除MathType的方法。
    转载:Microsoft Office 365激活,一键激活,无需登录Microsoft账号,无需下载KMS等激活工具,cmd命令激活。
    SpringBoot快速开发01
  • 原文地址:https://www.cnblogs.com/hyzs1220/p/13915589.html
Copyright © 2011-2022 走看看