杭电地址:http://acm.hdu.edu.cn/showproblem.php?pid=1016
Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13751 Accepted Submission(s): 6276
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Source
Recommend
JGShining
#include <stdio.h> #include <string.h> int prime[40]={0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0}; int Circle[20]; bool Visit[20],flag; int n,t=1; void Dfs(int x,int y) { int i; if(y==n+1&&prime[Circle[1]+x]==1) { if(!flag) { printf("Case %d:\n",t++); flag=true; } for( i=1;i<y-1;i++) printf("%d ",Circle[i]); printf("%d\n",Circle[i]); return ; } for( i=2;i<=n;i++) if(!Visit[i]&&prime[x+i]==1) { Circle[y++]=i; Visit[i]=true; Dfs(i,y); y--; Visit[i]=false; } } int main() { while(scanf("%d",&n)==1) { flag=false; memset(Visit,false,sizeof(Visit)); Visit[1]=true; Circle[1]=1; Dfs(1,2); printf("\n"); } return 0; }