zoukankan      html  css  js  c++  java
  • !688. Knight Probability in Chessboard

    #week10

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K moves. The rows and columns are 0 indexed, so the top-left square is (0, 0), and the bottom-right square is (N-1, N-1).

    A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

    Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.

    The knight continues moving until it has made exactly K moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.

    Example:

    Input: 3, 2, 0, 0
    Output: 0.0625
    Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
    From each of those positions, there are also two moves that will keep the knight on the board.
    The total probability the knight stays on the board is 0.0625.
    

    Note:

    • N will be between 1 and 25.
    • K will be between 0 and 100.
    • The knight always initially starts on the board.

    题解:

     1 class Solution {
     2 public:
     3     double knightProbability(int N, int K, int r, int c) {
     4         vector<vector<vector<double>>> dp(K+1, vector<vector<double>>(N, vector<double>(N, -1.0)));
     5         return helper(dp, N, K, r, c)/pow(8, K);
     6     }
     7 private:
     8     double helper(vector<vector<vector<double>>>& dp, int N, int k, int r, int c) {
     9         // if out of board, return 0.0
    10         if (r < 0 || r >= N || c < 0 || c >= N) return 0.0;
    11         // when k = 0, no more move, so it's 100% safe
    12         if (k == 0) return 1.0;
    13         if (dp[k][r][c] != -1.0) return dp[k][r][c];
    14         dp[k][r][c] = 0.0;
    15         for (int i = -2; i <= 2; i++) {
    16             if (i == 0) continue;
    17             dp[k][r][c] += helper(dp, N, k-1, r+i, c+3-abs(i)) + helper(dp, N, k-1, r+i, c-(3-abs(i)));
    18         }      
    19         return dp[k][r][c];
    20     }
    21 };
  • 相关阅读:
    MongoDB配置多个ConfigDB的问题(笔记)
    Python访问PostGIS(建表、空间索引、分区表)
    Python访问MySQL数据库
    Python访问MongoDB数据库
    Mapnik读取PostGIS数据渲染图片
    Python批量处理CSV文件
    Spring Mongo配置多个Mongos
    hadoop2.2.0_hbase0.96_zookeeper3.4.5全分布式安装文档下载
    【Git】(1)---工作区、暂存区、版本库、远程仓库
    微信扫码支付功能(2)---用户扫码支付成功,微信异步回调商户接口
  • 原文地址:https://www.cnblogs.com/iamxiaoyubei/p/8278263.html
Copyright © 2011-2022 走看看