zoukankan      html  css  js  c++  java
  • HDU

    题目大意

    求$$f_i=(i-1)!sum_{j=0}^{i-1}(i-j)^2{f_jover j!}$$

    简要题解

    为求$f_i$我们需要知道$f_0,cdots,f_{i-1}$,考虑cdq分治,把卷积拆开成关于已知的$f_i$和还没计算出来的部分,发现已知部分还是卷积形式,求出来累加上去就好。

    此外还写了个求原根,暴力枚举原根$a$,然后判断是否只有$a^{p-1}=1(mod p)$而$a^{p-1over p_i}=1(mod p)$皆不成立,其中$p_i$是$p$的所有素因子。

    #include <bits/stdc++.h>
    using namespace std;
    namespace my_header {
    #define pb push_back
    #define mp make_pair
    #define pii pair<int, int>
    #define vec vector<int>
    #define pc putchar
    #define clr(t) memset(t, 0, sizeof t)
    #define pse(t, v) memset(t, v, sizeof t)
    #define bl puts("")
    #define wn(x) wr(x), bl
    #define ws(x) wr(x), pc(' ')
        const int INF = 0x3f3f3f3f;
        typedef long long LL;
        typedef double DB;
        inline char gchar() {
            char ret = getchar();
            for(; (ret == '
    ' || ret == '
    ' || ret == ' ') && ret != EOF; ret = getchar());
            return ret; }
        template<class T> inline void fr(T &ret, char c = ' ', int flg = 1) {
            for(c = getchar(); (c < '0' || '9' < c) && c != '-'; c = getchar());
            if (c == '-') { flg = -1; c = getchar(); }
            for(ret = 0; '0' <= c && c <= '9'; c = getchar())
                ret = ret * 10 + c - '0';
            ret = ret * flg; }
        inline int fr() { int t; fr(t); return t; }
        template<class T> inline void fr(T&a, T&b) { fr(a), fr(b); }
        template<class T> inline void fr(T&a, T&b, T&c) { fr(a), fr(b), fr(c); }
        template<class T> inline char wr(T a, int b = 10, bool p = 1) {
            return a < 0 ? pc('-'), wr(-a, b, 0) : (a == 0 ? (p ? pc('0') : p) : 
                (wr(a/b, b, 0), pc('0' + a % b)));
        }
        template<class T> inline void wt(T a) { wn(a); }
        template<class T> inline void wt(T a, T b) { ws(a), wn(b); }
        template<class T> inline void wt(T a, T b, T c) { ws(a), ws(b), wn(c); }
        template<class T> inline void wt(T a, T b, T c, T d) { ws(a), ws(b), ws(c), wn(d); }
        template<class T> inline T gcd(T a, T b) {
            return b == 0 ? a : gcd(b, a % b); }
        template<class T> inline T fpw(T b, T i, T _m, T r = 1) {
            for(; i; i >>= 1, b = b * b % _m)
                if(i & 1) r = r * b % _m;
            return r; }
    };
    using namespace my_header;
    
    const int MAXN = 2e6 + 100;
    namespace NTT {
    
    const int MOD = 998244353;
    
    int inv[MAXN];
    
    
    vec getPrime(vec&isPrime, int rng = 1000000) {
        isPrime.resize(rng);
        fill(isPrime.begin(), isPrime.end(), 1);
        vec pri;
        isPrime[0] = isPrime[1] = 0;
        inv[1] = 1;
        for (int i = 2; i < rng; ++i) {
            if (isPrime[i]) {
                pri.pb(i);
                inv[i] = fpw((LL)i, MOD-2LL, (LL)MOD);
            }
            for (int j = 0; j < (int)pri.size() && pri[j] * 1LL * i < rng; ++j) {
                isPrime[i * 1LL * pri[j]] = 0;
                inv[i * 1LL * pri[j]] = 1LL * inv[i] * inv[pri[j]] % MOD;
            }
        }
        return pri;
    }
    
    void dfs_enum(vector<pii>&fac, int p, int d, vec&res) {
        if (d == (int)fac.size()) {
            res.pb(p);
            return ;
        }
        int v = fac[d].first, t = fac[d].second, c = 1;
        dfs_enum(fac, p, d + 1, res);
        for (int i = 0; i < t; ++i) {
            c = c * v;
            dfs_enum(fac, p * c, d + 1, res);
        }
    }
    
    vec enumerate(vector<pii>&fac) {
        vec res;
        dfs_enum(fac, 1, 0, res);
        return res;
    }
    
    vec factorize(LL val) {
        vec isPrime;
        vector<pii> fac;
        vec pri = getPrime(isPrime);
        for (int i = 0; i < (int)pri.size(); ++i) {
            int p = pri[i];
            if (val % p == 0) {
                fac.pb(mp(p, 0));
                while (val % p == 0) {
                    val /= p;
                    ++fac.back().second;
                }
            }
        }
        if (val != 1)
            fac.pb(mp(val, 1));
        return enumerate(fac);
    }
    
    int getPrimeRoot(LL val) {
        int pr;
        vec f = factorize(val - 1);
        for (pr = 2; ; ++pr) {
            if (fpw((LL)pr, val - 1LL, (LL)MOD) == 1) {
                bool ok = true;
                for (int i = 0; i < (int)f.size(); ++i)
                    if (f[i] != (val - 1) && fpw((LL)pr, (LL)f[i], (LL)MOD) == 1)
                        ok = false;
                if (ok) return pr;
            }
        }
    }
    
    int GN[24], rGN[24];
    int getGN(int m, int r) {
        if (r == 1) {
            if (GN[m] != 0) return GN[m];
            return GN[m] = fpw(3LL, (MOD-1LL) / (1<<m), (LL)MOD);
        } else {
            if (rGN[m] != 0) return rGN[m];
            return rGN[m] = fpw((LL)GN[m], MOD-2LL, (LL)MOD);
        }
    }
    
    
    int b[MAXN];
    
    void dft(int *a, int m, int r) {
        if (m == 0) return ;
        int N = 1<<m;
        memcpy(b, a, (sizeof a[0]) * N);
        for (int i = 0; i < (N>>1); ++i)
            a[i] = b[i<<1], a[(N>>1) + i] = b[(i<<1)|1];
        dft(a, m - 1, r), dft(a + (N>>1), m - 1, r);
        int gn = getGN(m, r), c = 1;
        for (int i = 0; i < (N>>1); c = 1LL * c * gn % MOD, ++i) {
            b[i] = (MOD + (a[i] + 1LL * c * a[i + (N>>1)] % MOD) % MOD) % MOD;
            b[i + (N>>1)] = (MOD + (a[i] - 1LL * c * a[i + (N>>1)] % MOD) % MOD) % MOD;
        }
        memcpy(a, b, (sizeof a[0]) * N);
    }
    
    };
    using namespace NTT;
    
    int j2[MAXN], fac[MAXN], ifac[MAXN], ta[MAXN], tb[MAXN], f[MAXN];
    
    void calc(int l, int r) {
        if (l == r) return;
        int m = (l + r) >> 1;
        calc(l, m);
        int len = r - l + 1, t = 0;
        for (; (1<<t) < len; ++t);
        for (int i = l; i <= m; ++i)
            ta[i - l] = f[i] * 1LL * ifac[i] % MOD;
        for (int i = m + 1; i < m + (1<<t); ++i)
            ta[i - l] = 0;
        for (int i = 0; i < (1<<t); ++i)
            tb[i] = j2[i] % MOD;
        dft(ta, t, 1);
        dft(tb, t, 1);
        for (int i = 0; i < (1<<t); ++i)
            ta[i] = ta[i] * 1LL * tb[i] % MOD;
        dft(ta, t, -1);
        for (int i = m + 1; i <= r; ++i)
            (f[i] += 1LL * fac[i - 1] * ta[i - l] % MOD * inv[1<<t] % MOD) %= MOD;
        calc(m + 1, r);
    }
    
    int main() {
    #ifdef lol
        freopen("G.in", "r", stdin);
        freopen("G.out", "w", stdout);
    #endif
    
        getPrimeRoot(MOD);
    
        fac[0] = 1;
        j2[0] = 0;
        for (int i = 1; i < MAXN; ++i) {
            fac[i] = fac[i-1] * 1LL * i % MOD;
            j2[i] = i * 1LL * i % MOD;
        }
        ifac[MAXN-1] = fpw((LL)fac[MAXN-1], MOD - 2LL, (LL)MOD);
        for (int i = MAXN-2; 0 <= i; --i)
            ifac[i] = (i + 1LL) * ifac[i + 1] % MOD;
    
        
        f[0] = 1;
        calc(0, 100000);
        int x;
        while (scanf("%d", &x) != EOF)
            wt(f[x]);
    
        return 0;
    }
  • 相关阅读:
    cmake 添加头文件目录,链接动态、静态库(转载)
    Opencv 2.4.10 +VS2010 项目配置
    郑捷《机器学习算法原理与编程实践》学习笔记(第七章 预测技术与哲学)7.3 岭回归
    Spark在Windows下的环境搭建(转)
    郑捷《机器学习算法原理与编程实践》学习笔记(第七章 预测技术与哲学)7.2 径向基网络
    郑捷《机器学习算法原理与编程实践》学习笔记(第七章 预测技术与哲学)7.1 线性系统的预测
    郑捷《机器学习算法原理与编程实践》学习笔记(第六章 神经网络初步)6.5 Boltzmann机算法
    cython学习
    郑捷《机器学习算法原理与编程实践》学习笔记(第六章 神经网络初步)6.3 自组织特征映射神经网路(SOM)
    郑捷《机器学习算法原理与编程实践》学习笔记(第六章 神经网络初步)6.2 BP神经网络
  • 原文地址:https://www.cnblogs.com/ichn/p/7169494.html
Copyright © 2011-2022 走看看