zoukankan      html  css  js  c++  java
  • matlab的taylor函数

    #############################

    sym/taylor
      taylor(f) is the fifth order Taylor polynomial approximation
            of f about the point x=0 (also known as fifth order
            Maclaurin polynomial), where x is obtained via symvar(f,1).
     
      taylor(f,x) is the fifth order Taylor polynomial approximation
            of f with respect to x about x=0. x can be a vector.
            In case x is a vector, multivariate expansion about x(1)=0,
            x(2)=0,... is used.
     
      taylor(f,x,a) is the fifth order Taylor polynomial approximation
            of f with respect to x about the point a. x and a can be
            vectors. If x is a vector and a is scalar, then a is
            expanded into a vector of the same size as x with all
            components equal to a. If x and a both are vectors, then
            they must have same length.
            In case x and a are vectors, multivariate expansion about
            x(1)=a(1),x(2)=a(2),... is used.
     
      In addition to that, the calls
     
        taylor(f,'PARAM1',val1,'PARAM2',val2,...)
        taylor(f,x,'PARAM1',val1,'PARAM2',val2,...)
        taylor(f,x,a,'PARAM1',val1,'PARAM2',val2,...)
     
      can be used to specify one or more of the following parameter
      name/value pairs:
     
        Parameter        Value
     
        'ExpansionPoint' Compute the Taylor polynomial approximation
                         about the point a. a can be a vector. If x is a
                         vector, then a has to be of the same length as x.
                         If a is scalar and x is a vector, a is expanded into
                         a vector of the same length as x with all components
                         equal to a. Note that if x is not given as in
                         taylor(f,'ExpansionPoint',a), then a must be
                         scalar (since x is determined via symvar(f,1)).
                         It is always possible to specify the expansion
                         point as third argument without explicitly using
                         a parameter value pair.
     
        'Order'          Compute the Taylor polynomial approximation with
                         order n-1, where n has to be a positive integer. The
                         default value n=6 is used.
     
        'OrderMode'      Compute the Taylor polynomial approximation using
                         relative or absolute order. 'Absolute' order is the
                         truncation order of the computed series. 'Relative'
                         order n means the exponents of x in the computed
                         series range from some leading order v to the highest
                         exponent v + n - 1 (i.e., the exponent of x in the
                         Big-Oh term is v + n). In this case, n essentially
                         is the "number of x powers" in the computed series
                         if the series involves all integer powers of x
     
        Examples:
           syms x y z;
     
           taylor(exp(-x))
           returns  x^4/24 - x^5/120 - x^3/6 + x^2/2 - x + 1
     
           taylor(sin(x),x,pi/2,'Order',6)
           returns  (pi/2 - x)^4/24 - (pi/2 - x)^2/2 + 1
     
           taylor(sin(x)*cos(y)*exp(x),[x y z],[0 0 0],'Order',4)
           returns  x - (x*y^2)/2 + x^2 + x^3/3
     
           taylor(exp(-x),x,'OrderMode','Relative','Order',8)
           returns  - x^7/5040 + x^6/720 - x^5/120 + x^4/24 - x^3/6 + ...
                    x^2/2 - x + 1
     
           taylor(log(x),x,'ExpansionPoint',1,'Order',4)
           returns  x - 1 - 1/2*(x - 1)^2 + 1/3*(x - 1)^3
     
           taylor([exp(x),cos(y)],[x,y],'ExpansionPoint',[1 1],'Order',4)
           returns  exp(1) + exp(1)*(x - 1) + (exp(1)*(x - 1)^2)/2 + ...
                   (exp(1)*(x - 1)^3)/6'), cos(1) + (sin(1)*(y - 1)^3)/6 - ...
                    sin(1)*(y - 1) - (cos(1)*(y - 1)^2)/2
     
           taylor(exp(z)/(x - y),[x,y,z],'ExpansionPoint',[Inf,0,0], ...
                  'OrderMode','Absolute','Order',6)
           returns  y^2/x^3 + z^2/(2*x) + z^3/(6*x) + z^4/(24*x) + y/x^2 + ...
                    z/x + 1/x + (y*z)/x^2 + (y*z^2)/(2*x^2)
    See also

    以x自变量的函数y在x=2处的泰勒展开6项:taylor(exp(-x),x,2,'Order',6)

    >> syms x y z;
    

    >> taylor(exp(x)) ans = x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1

    >> taylor(exp(-x),x,2,'Order',6) ans = exp(-2) - exp(-2)*(x - 2) + (exp(-2)*(x - 2)^2)/2 - (exp(-2)*(x - 2)^3)/6 + (exp(-2)*(x - 2)^4)/24 - (exp(-2)*(x - 2)^5)/120 >> taylor(exp(-x),x,'Order',6) ans = - x^5/120 + x^4/24 - x^3/6 + x^2/2 - x + 1

    ###################################

    igoodful@qq.com
  • 相关阅读:
    集合容器概述
    enum枚举类型
    this关键字、this()、super()
    重载与重写
    nginx报404的可能错误
    nginx常用命令
    vbs系统监控
    VBS windows监控
    Oracle SQL优化[转]
    shell /bin/bash^M: bad interpreter错误解决
  • 原文地址:https://www.cnblogs.com/igoodful/p/14719610.html
Copyright © 2011-2022 走看看