zoukankan      html  css  js  c++  java
  • Hadoop介绍-1.基本原理

    了解大数据

    首先,搞清楚hadoop在处理大数据的定位在哪里

    什么是大数据?为什么要处理大数据?

    数据量大(Volume) 数据类别复杂(Variety) 数据处理速度快(Velocity) 数据真实性高(Veracity) 合起来被称为4V。

    处理大数据是为了挖掘数据中的隐含价值

    如何处理大数据?

    集中式计算VS分布式计算

    集中式计算:通过不断增加处理器的个数来增强耽搁计算机的计算能力,从而提高处理的速度。需要的内存很大,计算的速度很快。

    分布式计算:一组通过网络连接的计算机,形成一个分散的系统。将需要处理的大量数据分散成多个部分,交由系统中的耽搁计算机分别处理,最后将这些计算结果合并得到最终结果。(MapReduce的核心思想)

    Hadoop是怎么产生的

    技术基础

    google三驾马车:GFS、MapReduce和BigTable。Hadoop是在google三驾马车基础上的开源实现。

    1. GFS(Google File System)分布式文件系统,对应Hadoop当中的HDFS。
    2. MapReduce分布式计算框架,也是Hadoop处理大数据的核心思想。
    3. BigTable是基于GFS的数据存储系统,对应Hadoop的HBase。

    三大分布式计算系统

    Hadoop,Spark,Storm是主流的三大分布式计算系统

    Spark VS Hadoop

    Hadoop使用硬盘来存储数据,而Spark是将数据存在内存中的,因此Spark何以提供超过Hadoop 100倍的计算速度。内存断电后会丢失,所以Spark不
    适用于需要长期保存的数据。

    Storm VS Hadoop

    Storm在Hadoop基础上提供了实时运算的特性,可以实时处理大数据流。不同于Hadoop和Spark,Storm不进行数据的搜集和存储工作,直接通过网络接受并实时处理数据,然后直接通过网络实时传回结果。

    所以三者适用于的应用场景分别为:

    1. Hadoop常用于离线的复杂的大数据处理
    2. Spark常用于离线的快速的大数据处理
    3. Storm常用于在线实时的大数据处理

    Hadoop定义

    Hadoop是什么

    Hadoop是一个能够对大量数据进行分布式处理的软件框架

    Hadoop特点

    1. 可靠。Hadoop假设计算元素和存储会失败,所以会维护多个工作数据的副本,对失败的节点会重新处理
    2. 高效。通过并行方式工作,加快处理速度。
    3. 可伸缩。可以处理PB级的数据。
    4. 高扩展。可以方便地扩展到数以千计的节点。
    5. 低成本。Hadoop是开源的,Hadoop节点可以是很便宜的机器。

    应用场景

    Hadoop适用于:海量数据,离线数据,复杂数据

    场景1:数据分析,如海量日志分析,商品推荐,用户行为分析

    场景2:离线计算,(异构计算+分布式计算)天文计算

    场景3:海量数据存储,如Facebook的存储集群。

    更多应用场景

    Hadoop原理

    HDFS

    HDFS(Hadoop File System),是Hadoop的分布式文件存储系统

    1. 将大文件分解为多个Block,每个Block保存多个副本。提供容错机制,副本丢失或者宕机时自动恢复。
    2. 默认每个Block保存3个副本,64M为1个Block。
    3. 将Block按照key-value映射到内存当中。

    HDFS架构图如下:

    NameNode

    HDFS使用主从结构,NameNode是Master节点,是领导。所有的客户端的读写请求,都需要首先请求NameNode。

    NameNode存储

    1. fsimage:元数据镜像文件(文件系统的目录树,文件的元数据信息)。元数据信息包括文件的信息,文件对应的block信息(版本信息,类型信息,和checksum),以及每一个block所在的DataNode的信息。
    2. edits:元数据的操作日志
    DataNode

    DataNode是Slave,负责真正存储所有的block内容,以及数据块的读写操作

    NameNode,DataNode,rack只是一些逻辑上的概念。NameNode和DataNode可能是一台机器也可能是,相邻的一台机器,很多DataNode可能处于同一台机器。rack是逻辑上比DataNode更大的概念,可能是一台机器,一台机柜,也可能是一个机房。通过使文件的备份更广泛地分布到不同的rack,DataNode上可以保证数据的可靠性。

    HDFS写入数据
    1. Client拆分文件为64M一块。
    2. Client向NameNode发送写数据请求。
    3. NameNode节点,记录block信息。并返回可用的DataNode。
    4. Client向DataNode发送block1,2,3….;发送过程是以流式写入。流式写入,数据流向为DataNode1->DataNode2->DataNode3(1,2,3为通过规则选出来的可用的DataNode)
    5. 发送完毕后告知NameNode
    6. NameNode告知Client发送完成

    在写数据的时候:

    • 写1T文件,我们需要3T的存储,3T的网络流量贷款。
    • 在执行读或写的过程中,NameNode和DataNode通过HeartBeat进行保存通信,确定DataNode活着。如果发现DataNode死掉了,就将死掉的DataNode上的数据,放到其他节点去。读取时,要读其他节点去。
    • 挂掉一个节点,没关系,还有其他节点可以备份;甚至,挂掉某一个机架,也没关系;其他机架上,也有备份。
    HDFS读取数据
    1. Client向NameNode发送读请求
    2. NameNode查看MetaData信息,返回文件的block位置
    3. 根据一定规则(优先选择附近的数据),按顺序读取block

    更多内容

    MapReduce

    Map是把一组数据一对一的映射为另外的一组数据,其映射的规则由一个map函数来指定。Reduce是对一组数据进行归约,这个归约的规则由一个reduce函数指定。

    整个的MapReduce执行过程可以表示为:

    (input)<k1, v1> => map => <k2, v2> => combine => <k2, v2’> => reduce => <k3, v3>(output)

    也可以表示为流程图:

    1. 分割:把输入数据分割成不相关的若干键/值对(key1/value1)集合,作为input
    2. 映射:这些键/值对会由多个map任务来并行地处理。输出一些中间键/值对key2/value2集合
    3. 排序:MapReduce会对map的输出(key2/value2)按照key2进行排序(便于归并)
    4. conbine:属于同一个key2的所有value2组合在一起作为reduce任务的输入(相当于提前reduce,减小key2的数量,减小reduce的负担)
    5. Partition:将mapper的输出分配到reducer;(Map的中间结果通常用”hash(key) mod R”这个结果作为标准)
    6. 规约:由reduce任务计算出最终结果并输出key3/value3。

    程序员需要做的

    • 单机程序需要处理数据读取和写入、数据处理
    • Hadoop程序需要实现map和reduce函数
    • map和reduce之间的数据传输、排序,容错处理等由Hadoop MapReduce和HDFS自动完成。
  • 相关阅读:
    第三次作业-有进度条圆周率计算
    第一周作业
    24点
    Cuber Sorting
    P1827 [USACO3.4]美国血统 American Heritage
    P4387 【深基15.习9】验证栈序列
    P2058 海港
    P4017 最大食物链计数
    P2196 挖地雷
    放苹果问题
  • 原文地址:https://www.cnblogs.com/ilifeilong/p/7401669.html
Copyright © 2011-2022 走看看